Machine Learning Automated Analysis of Enormous Synchrotron X-ray Diffraction Datasets

被引:7
作者
Zhao, Xiaodong [1 ,2 ]
Luo, YiXuan [3 ]
Liu, Juejing [1 ,4 ]
Liu, Wenjun [5 ]
Rosso, Kevin M. [1 ]
Guo, Xiaofeng [2 ,4 ]
Geng, Tong [3 ]
Li, Ang [1 ]
Zhang, Xin [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[3] Univ Rochester, Dept Elect & Comp Engn, New York, NY 14627 USA
[4] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA
[5] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
IDENTIFICATION;
D O I
10.1021/acs.jpcc.3c03572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-raydiffraction (XRD) data analysis can be a time-consumingandlaborious task. Deep neural network (DNN) based models trained withsynthetic XRD patterns have been proven to be a highly efficient,accurate, and automated method for analyzing common XRD data collectedfrom solid samples in ambient environments. However, it remains unclearwhether synthetic XRD-based models can be effective in solving micro(& mu;)-XRDmapping data for in situ experiments involving liquid phases, whichalways have lower quality and significant artifacts. In this study,we collected & mu;-XRD mapping data from a LaCl3-calcitehydrothermal fluid system and trained two categories of models toanalyze the experimental XRD patterns. The models trained solely withsynthetic XRD patterns showed low accuracy (as low as 64%) when solvingexperimental & mu;-XRD mapping data. However, the accuracy of theDNN models significantly improved (90% or above) when we trained themwith a data set containing both synthetic and a small number of labeledexperimental & mu;-XRD patterns. This study highlights the importanceof labeled experimental patterns in training DNN models to solve & mu;-XRDmapping data from in situ experiments involving liquid phases.
引用
收藏
页码:14830 / 14838
页数:9
相关论文
共 38 条
[21]   The HXD95: a modified Bassett-type hydrothermal diamond-anvil cell for in situ XRD experiments up to 5 GPa and 1300 K [J].
Louvel, Marion ;
Drewitt, James W. E. ;
Ross, Allan ;
Thwaites, Richard ;
Heinen, Benedict J. ;
Keeble, Dean S. ;
Beavers, Christine M. ;
Walter, Michael J. ;
Anzellini, Simone .
JOURNAL OF SYNCHROTRON RADIATION, 2020, 27 :529-537
[22]   Monitoring the crystallization of water-saturated granitic melts in real time using the hydrothermal diamond anvil cell [J].
Maneta, Victoria ;
Anderson, Alan J. .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2018, 173 (10)
[23]   High-Throughput and Autonomous Grazing Incidence X-ray Diffraction Mapping of Organic Combinatorial Thin-Film Library Driven by Machine Learning [J].
Maruyama, Shingo ;
Ouchi, Kana ;
Koganezawa, Tomoyuki ;
Matsumoto, Yuji .
ACS COMBINATORIAL SCIENCE, 2020, 22 (07) :348-355
[24]   Perovskite or Not Perovskite? A Deep-Learning Approach to Automatically Identify New Hybrid Perovskites from X-ray Diffraction Patterns [J].
Massuyeau, Florian ;
Broux, Thibault ;
Coulet, Florent ;
Demessence, Aude ;
Mesbah, Adel ;
Gautier, Romain .
ADVANCED MATERIALS, 2022, 34 (41)
[25]   Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT [J].
O'Brien, Matthew G. ;
Jacques, Simon D. M. ;
Di Michiel, Marco ;
Barnes, Paul ;
Weckhuysen, Bert M. ;
Beale, Andrew M. .
CHEMICAL SCIENCE, 2012, 3 (02) :509-523
[26]  
Paszke A, 2019, ADV NEUR IN, V32
[27]   DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J].
Prescher, Clemens ;
Prakapenka, Vitali B. .
HIGH PRESSURE RESEARCH, 2015, 35 (03) :223-230
[28]   Enhancing deep-learning training for phase identification in powder X-ray diffractograms [J].
Schuetzke, Jan ;
Benedix, Alexander ;
Mikut, Ralf ;
Reischl, Markus .
IUCRJ, 2021, 8 :408-420
[29]   Reversibility of anodic lithium in rechargeable lithium-oxygen batteries [J].
Shui, Jiang-Lan ;
Okasinski, John S. ;
Kenesei, Peter ;
Dobbs, Howard A. ;
Zhao, Dan ;
Almer, Jonathan D. ;
Liu, Di-Jia .
NATURE COMMUNICATIONS, 2013, 4
[30]   Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach [J].
Suzuki, Yuta ;
Hino, Hideitsu ;
Hawai, Takafumi ;
Saito, Kotaro ;
Kotsugi, Masato ;
Ono, Kanta .
SCIENTIFIC REPORTS, 2020, 10 (01)