Machine Learning Automated Analysis of Enormous Synchrotron X-ray Diffraction Datasets

被引:5
作者
Zhao, Xiaodong [1 ,2 ]
Luo, YiXuan [3 ]
Liu, Juejing [1 ,4 ]
Liu, Wenjun [5 ]
Rosso, Kevin M. [1 ]
Guo, Xiaofeng [2 ,4 ]
Geng, Tong [3 ]
Li, Ang [1 ]
Zhang, Xin [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[3] Univ Rochester, Dept Elect & Comp Engn, New York, NY 14627 USA
[4] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA
[5] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
IDENTIFICATION;
D O I
10.1021/acs.jpcc.3c03572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-raydiffraction (XRD) data analysis can be a time-consumingandlaborious task. Deep neural network (DNN) based models trained withsynthetic XRD patterns have been proven to be a highly efficient,accurate, and automated method for analyzing common XRD data collectedfrom solid samples in ambient environments. However, it remains unclearwhether synthetic XRD-based models can be effective in solving micro(& mu;)-XRDmapping data for in situ experiments involving liquid phases, whichalways have lower quality and significant artifacts. In this study,we collected & mu;-XRD mapping data from a LaCl3-calcitehydrothermal fluid system and trained two categories of models toanalyze the experimental XRD patterns. The models trained solely withsynthetic XRD patterns showed low accuracy (as low as 64%) when solvingexperimental & mu;-XRD mapping data. However, the accuracy of theDNN models significantly improved (90% or above) when we trained themwith a data set containing both synthetic and a small number of labeledexperimental & mu;-XRD patterns. This study highlights the importanceof labeled experimental patterns in training DNN models to solve & mu;-XRDmapping data from in situ experiments involving liquid phases.
引用
收藏
页码:14830 / 14838
页数:9
相关论文
共 38 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2022, ABOUT US
[3]  
[Anonymous], 2019, JADE 9 5
[4]  
[Anonymous], 2021, PAND DEV PAND PAND 1
[5]   Automating crystal-structure phase mapping by combining deep learning with constraint reasoning [J].
Chen, Di ;
Bai, Yiwei ;
Ament, Sebastian ;
Zhao, Wenting ;
Guevarra, Dan ;
Zhou, Lan ;
Selman, Bart ;
van Dover, R. Bruce ;
Gregoire, John M. ;
Gomes, Carla P. .
NATURE MACHINE INTELLIGENCE, 2021, 3 (09) :812-+
[6]   Multi-scale investigation of uranium attenuation by arsenic at an abandoned uranium mine, South Terras [J].
Corkhill, Claire L. ;
Crean, Daniel E. ;
Bailey, Daniel J. ;
Makepeace, Carmen ;
Stennett, Martin C. ;
Tappero, Ryan ;
Grolimund, Daniel ;
Hyatt, Neil C. .
NPJ MATERIALS DEGRADATION, 2017, 1 (01)
[7]   Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares [J].
Dejoie, Catherine ;
Sciau, Philippe ;
Li, Weidong ;
Noe, Laure ;
Mehta, Apurva ;
Chen, Kai ;
Luo, Hongjie ;
Kunz, Martin ;
Tamura, Nobumichi ;
Liu, Zhi .
SCIENTIFIC REPORTS, 2014, 4
[8]   Synchrotron Imaging of Pore Formation in Li Metal Solid-State Batteries Aided by Machine Learning [J].
Dixit, Marm B. ;
Verma, Ankit ;
Zaman, Wahid ;
Zhong, Xinlin ;
Kenesei, Peter ;
Park, Jun Sang ;
Almer, Jonathan ;
Mukherjee, Partha P. ;
Hatzell, Kelsey B. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) :9534-9542
[9]   ANALYSIS OF COHERENCE, STRAIN, THERMAL VIBRATION AND PREFERRED ORIENTATION IN CARBONS BY X-RAY-DIFFRACTION [J].
ERGUN, S .
CARBON, 1976, 14 (03) :139-150
[10]   Micro X-ray diffraction μXRD):: a versatile technique for characterization of earth and planetary materials [J].
Flemming, Roberta L. .
CANADIAN JOURNAL OF EARTH SCIENCES, 2007, 44 (09) :1333-1346