Uncertainty relations for metric adjusted skew information and Cauchy-Schwarz inequality

被引:2
作者
Hu, Xiaoli [1 ]
Jing, Naihuan [2 ,3 ]
机构
[1] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Hubei, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
uncertainty relations; skew information; Cauchy-Schwarz inequality; WIGNER;
D O I
10.1088/1612-202X/accce3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Skew information is a pivotal concept in quantum information, quantum measurement, and quantum metrology. Further studies have lead to the uncertainty relations grounded in metric-adjusted skew information. In this work, we present an in-depth investigation using the methodologies of sampling coordinates of observables and convex functions to refine the uncertainty relations in both the product form of two observables and summation form of multiple observables.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] MEASUREMENT OF QUANTUM MECHANICAL OPERATORS
    ARAKI, H
    YANASE, MM
    [J]. PHYSICAL REVIEW, 1960, 120 (02): : 622 - 626
  • [2] Sum uncertainty relations based on metric-adjusted skew information
    Cai, Liang
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (02)
  • [3] Sum uncertainty relations based on Wigner-Yanase skew information
    Chen, Bin
    Fei, Shao-Ming
    Long, Gui-Lu
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (06) : 2639 - 2648
  • [4] Tight N-observable uncertainty relations and their experimental demonstrations
    Chen, Zhi-Xin
    Wang, Hui
    Li, Jun-Li
    Song, Qiu-Cheng
    Qiao, Cong-Feng
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Frieden BR., 1998, PHYS FISHER INFORM U, DOI [10.1017/CBO9780511622670, DOI 10.1017/CBO9780511622670]
  • [7] Metric adjusted skew information
    Hansen, Frank
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (29) : 9909 - 9916
  • [8] Hayashi M., 2006, QUANTUM INFORM INTRO, DOI DOI 10.1088/1126-6708/2007/09/120
  • [9] Heisenberg W, 1927, Z PHYS, V43, P172, DOI DOI 10.1007/BF01397280
  • [10] Improved unitary uncertainty relations
    Hu, Xiaoli
    Jing, Naihuan
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (02)