Upgrading nirmatrelvir to inhibit SARS-CoV-2 Mpro via DeepFrag and free energy calculations

被引:14
作者
Tam, Nguyen Minh [1 ]
Nguyen, Trung Hai [2 ,3 ]
Pham, Minh Quan [4 ,5 ]
Hong, Nam Dao [6 ]
Tung, Nguyen Thanh [5 ,7 ]
Vu, Van V. [8 ]
Quang, Duong Tuan [9 ]
Ngo, Son Tung [2 ,3 ]
机构
[1] Univ Phan Thiet, Fac Basic Sci, Phan Thiet, Binh Thuan, Vietnam
[2] Ton Duc Thang Univ, Inst Adv Study Technol, Lab Biophys, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Pharm, Ho Chi Minh City, Vietnam
[4] Vietnam Acad Sci & Technol, Inst Nat Prod Chem, Hanoi, Vietnam
[5] Vietnam Acad Sci & Technol, Grad Univ Sci & Technol, Hanoi, Vietnam
[6] Univ Med & Pharm Ho Chi Minh City, Ho Chi Minh City, Vietnam
[7] Vietnam Acad Sci & Technol, Inst Mat Sci, Hanoi, Vietnam
[8] Nguyen Tat Thanh Univ, NTT Hitech Inst, Ho Chi Minh City, Vietnam
[9] Hue Univ, Dept Chem, Thua Thien Hue Prov, Hue, Thua Thien Hue, Vietnam
关键词
MAIN PROTEASE; POTENTIAL INHIBITORS; BINDING; FORCE;
D O I
10.1016/j.jmgm.2023.108535
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The first oral drug for the treatment of COVID-19, Paxlovid, has been authorized; however, nirmatrelvir, a major component of the drug, is reported to be associated with some side effects. Moreover, the appearance of many novel variants raises concerns about drug resistance, and designing new potent inhibitors to prevent viral replication is thus urgent. In this context, using a hybrid approach combining machine learning (ML) and free energy simulations, 6 compounds obtained by modifying nirmatrelvir were proposed to bind strongly to SARS-CoV-2 Mpro. The structural modification of nirmatrelvir significantly enhances the electrostatic interaction free energy between the protein and ligand and slightly decreases the vdW term. However, the vdW term is the most important factor in controlling the ligand-binding affinity. In addition, the modified nirmatrelvir might be less toxic to the human body than the original inhibitor.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Motional timescale predictions by molecular dynamics simulations: Case study using proline and hydroxyproline sidechain dynamics [J].
Aliev, Abil E. ;
Kulke, Martin ;
Khaneja, Harmeet S. ;
Chudasama, Vijay ;
Sheppard, Tom D. ;
Lanigan, Rachel M. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (02) :195-215
[3]   Coronavirus main proteinase (3CLpro) structure:: Basis for design of anti-SARS drugs [J].
Anand, K ;
Ziebuhr, J ;
Wadhwani, P ;
Mesters, JR ;
Hilgenfeld, R .
SCIENCE, 2003, 300 (5626) :1763-1767
[4]  
[Anonymous], 2021, Coronavirus (COVID-19) update: FDA takes additional actions on the use of a booster dose for COVID-19 vaccines
[5]  
[Anonymous], 2021, COVID 19 VACC, V2021
[6]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[7]   Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities [J].
Cannalire, Rolando ;
Cerchia, Carmen ;
Beccari, Andrea R. ;
Di Leva, Francesco Saverio ;
Summa, Vincenzo .
JOURNAL OF MEDICINAL CHEMISTRY, 2022, 65 (04) :2716-2746
[8]  
Case DA., 2016, AMBER 2016
[9]   Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma [J].
Cele, Sandile ;
Gazy, Inbal ;
Jackson, Laurelle ;
Hwa, Shi-Hsia ;
Tegally, Houriiyah ;
Lustig, Gila ;
Giandhari, Jennifer ;
Pillay, Sureshnee ;
Wilkinson, Eduan ;
Naidoo, Yeshnee ;
Karim, Farina ;
Ganga, Yashica ;
Khan, Khadija ;
Bernstein, Mallory ;
Balazs, Alejandro B. ;
Gosnell, Bernadett, I ;
Hanekom, Willem ;
Moosa, Mahomed-Yunus S. ;
Lessells, Richard J. ;
de Oliveira, Tulio ;
Sigal, Alex .
NATURE, 2021, 593 (7857) :142-+
[10]   Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding [J].
Chan, H. T. Henry ;
Moesser, Marc A. ;
Walters, Rebecca K. ;
Malla, Tika R. ;
Twidale, Rebecca M. ;
John, Tobias ;
Deeks, Helen M. ;
Johnston-Wood, Tristan ;
Mikhailov, Victor ;
Sessions, Richard B. ;
Dawson, William ;
Salah, Eidarus ;
Lukacik, Petra ;
Strain-Damerell, Claire ;
Owen, C. David ;
Nakajima, Takahito ;
Swiderek, Katarzyna ;
Lodola, Alessio ;
Moliner, Vicent ;
Glowacki, David R. ;
Spencer, James ;
Walsh, Martin A. ;
Schofield, Christopher J. ;
Genovese, Luigi ;
Shoemark, Deborah K. ;
Mulholland, Adrian J. ;
Duarte, Fernanda ;
Morris, Garrett M. .
CHEMICAL SCIENCE, 2021, 12 (41) :13686-13703