Thermoresponsive Dendronized Microgels through In Situ Cross-Linking Polymerization to Exhibit Enhanced Confinement for Solvatochromic Dyes

被引:12
作者
Zhang, Jiaxing [1 ]
Yao, Yi [1 ]
Zhang, Yangwen [1 ]
Wu, Di [1 ]
Li, Wen [1 ]
Whittaker, Andrew K. [2 ]
Zhang, Afang [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Int Joint Lab Biomimet & Smart Polymers, 333 Nanchen Rd, Shanghai 200444, Peoples R China
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
基金
中国国家自然科学基金;
关键词
TEMPERATURE; DEFORMATION; TRANSITIONS; COPOLYMERS; PARTICLES; POLYMERS; NANOGELS; DENSITY; SENSORS;
D O I
10.1021/acs.macromol.3c00581
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymeric microgels form a classof promising materials for variousapplications based on their highly tunable swelling and cooperativeinteractions between the cross-linked polymer chains. Here, we reporton a convenient route for the fabrication of polymeric microgels through in situ cross-linking polymerization of thermally collapsedmacromonomers carrying 3-fold dendritic oligoethylene glycol (OEG)pendants, affording thermoresponsive dendronized microgels with intriguingmicroconfinement. This methodology has been proven to be versatileand can be used to prepare intelligent microgels through homopolymerizationof thermoresponsive dendronized macromonomers, or via copolymerization with either hydrophobic or hydrophilic, and dendronizedor nondendronized comonomers. The thermoresponsive microgels of uniformsizes undergo shrinking or swelling by changing the temperature aboveor below their phase transition temperatures and thus exhibit tunablemicroconfinement to encapsulated solvatochromic dye molecules. Thisoutstanding capacity for confinement by the microgels is comparedto linear copolymers with or without dendritic architectures and isproposed to originate from both dendritic crowding effects and cooperativeinteractions between polymer chains within the network. This remarkablefeature of microconfinement opens a new era for microgels to reversiblyencapsulate and protect guest molecules and provides a platform tomanipulate the functions of the encapsulated guests through externalstimuli.
引用
收藏
页码:3931 / 3944
页数:14
相关论文
共 62 条
  • [31] Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems
    Perry, Sarah L.
    McClements, David Julian
    [J]. MOLECULES, 2020, 25 (05):
  • [32] Organization of Microgels at the Air-Water Interface under Compression: Role of Electrostatics and Cross-Linking Density
    Picard, Christine
    Garrigue, Patrick
    Tatry, Marie-Charlotte
    Lapeyre, Veronique
    Ravaine, Serge
    Schmitt, Veronique
    Ravaine, Valerie
    [J]. LANGMUIR, 2017, 33 (32) : 7968 - 7981
  • [33] Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization
    Pich, Andrij
    Richtering, Walter
    [J]. CHEMICAL DESIGN OF RESPONSIVE MICROGELS, 2010, 234 : 1 - 37
  • [34] Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes
    Pietsch, Christian
    Schubert, Ulrich S.
    Hoogenboom, Richard
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (31) : 8750 - 8765
  • [35] Soluble Polymeric Dual Sensor for Temperature and pH Value
    Pietsch, Christian
    Hoogenboom, Richard
    Schubert, Ulrich S.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (31) : 5653 - 5656
  • [36] Functional Microgels and Microgel Systems
    Plamper, Felix A.
    Richtering, Walter
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (02) : 131 - 140
  • [37] Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications
    Ran, Rui
    Sun, Qi
    Baby, Thejus
    Wibowo, David
    Middelberg, Anton P. J.
    Zhao, Chun-Xia
    [J]. CHEMICAL ENGINEERING SCIENCE, 2017, 169 : 78 - 96
  • [38] Microgels: From responsive polymer colloids to biomaterials
    Saunders, Brian R.
    Laajam, Nadiah
    Daly, Emma
    Teow, Stephanie
    Hu, Xinhua
    Stepto, Robert
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2009, 147-48 : 251 - 262
  • [39] Microgel Mechanics in Biomaterial Design
    Saxena, Shalini
    Hansen, Caroline E.
    Lyon, L. Andrew
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (08) : 2426 - 2434
  • [40] Deswelling of Microgels in Crowded Suspensions Depends on Cross-Link Density and Architecture
    Scotti, Andrea
    Denton, Alan R.
    Brugnoni, Monia
    Houston, Judith E.
    Schweins, Ralf
    Potemkin, Igor I.
    Richtering, Walter
    [J]. MACROMOLECULES, 2019, 52 (11) : 3995 - 4007