Chemical Stability of MIL-101(Cr) upon Adsorption of SO2 and NO2 under Dry and Humid Conditions

被引:6
|
作者
Carter, Eli A. [1 ]
Hungerford, Julian T. [1 ]
Joshi, Jayraj N. [1 ]
DeWitt, Stephen J. A. [1 ]
Jiang, Xiao [1 ]
Marszalek, Bartosz [1 ]
Lively, Ryan P. [1 ]
Walton, Krista S. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
关键词
METAL-ORGANIC FRAMEWORKS; ZEOLITIC IMIDAZOLATE FRAMEWORKS; ACID GASES; SEPARATION; WATER; SITES;
D O I
10.1021/acs.iecr.3c00209
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A detailed understanding of the chemical stability ofmetal-organicframeworks (MOFs) in water and acidic and basic solutions currentlyexists; however, there has been comparatively little investigationinto the chemical stability of MOFs in the presence of acid gas speciesthat may be present in industrial settings. MIL-101-(Cr), a MOF thatis stable in liquid water as well as acidic and basic solutions, wastested for its stability upon exposure to the acid gases sulfur dioxide(SO2) and nitrogen dioxide (NO2). Successivebreakthrough experiments of both SO2 and NO2 show that both gases lower the adsorption capacity of MIL-101-(Cr),which is also observed by N-2 physisorption experiments.X-ray photoelectron spectroscopy (XPS) confirms the presence of sulfurand nitrogen species in MIL-101-(Cr) after exposure to SO2 and NO2 species. In situ infrared spectroscopyexperiments suggest that adsorption of SO2 in MIL-101-(Cr)is not completely reversible and that adsorption of NO2 in MIL-101-(Cr) causes some structural degradation similar to whathas been previously observed in HKUST-1.
引用
收藏
页码:8864 / 8872
页数:9
相关论文
共 50 条
  • [21] Preparation of monosodium 2-sulfoterephthalate to make a MIL-101(Cr)-SO3H catalyst
    Lee, Kuo-Tong
    Pien, Chien-Yi
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (02) : 868 - 876
  • [22] Adsorption cooling system employing novel MIL-101(Cr)/CaCl2 composites: Numerical study
    Elsayed, Eman
    AL-Dadah, Raya
    Mahmoud, Saad
    Anderson, Paul
    Elsayed, Ahmed
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 107 : 246 - 261
  • [23] Adsorption Equilibrium and Kinetics of CO2 on Chromium Terephthalate MIL-101
    Zhang, Zhijuan
    Huang, Sisi
    Xian, Shikai
    Xi, Hongxia
    Li, Zhong
    ENERGY & FUELS, 2011, 25 (02) : 835 - 842
  • [24] Salen-Cu(Ⅱ)@MIL-101(Cr) as an efficient heterogeneous catalyst for cycloaddition of CO2 to epoxides under mild conditions
    Caijuan Liu
    Xiao-Huan Liu
    Bo Li
    Lei Zhang
    Jian-Gong Ma
    Peng Cheng
    Journal of Energy Chemistry , 2017, (05) : 821 - 824
  • [25] CO2 capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases
    Gaikwad, Sanjit
    Kim, Seok-Jhin
    Han, Sangil
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 277 : 253 - 260
  • [26] Enhancement of CO2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification
    Anbia, Mansoor
    Hoseini, Vahid
    JOURNAL OF NATURAL GAS CHEMISTRY, 2012, 21 (03): : 339 - 343
  • [27] Catalytic performance of MIL-101(Cr) in oxidation of cyclohexane with H2O2
    Zhang, Jiangong
    He, Min
    Fan, Binbin
    Li, Ruifeng
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29 (02): : 238 - 242
  • [28] Efficient Adsorption of Ionic Liquids in Water Using -SO3H-Functionalized MIL-101(Cr): Adsorption Behavior and Mechanism
    Zhang, Ling
    Ma, Shuai
    Hu, Sumei
    Qu, Qiao
    Deng, Chengxun
    Xu, Zhaoyi
    Liu, Xiaowei
    LANGMUIR, 2024, 40 (52) : 27481 - 27491
  • [29] Synergetic enhancement of CO2 direct air capture with monoethanolamine-impregnated MIL-101(Cr) MOFs
    Jiang, Kun
    Yang, Jian
    Zhou, Yuxin
    Gu, Jinlou
    MICROPOROUS AND MESOPOROUS MATERIALS, 2024, 366
  • [30] Mg2+ embedded MIL-101(Cr)-NH2 framework for improved CO2 adsorption and CO2/N2 selectivity
    Vo The Ky
    Duong Tuan Quang
    VIETNAM JOURNAL OF CHEMISTRY, 2021, 59 (05) : 667 - 675