FedMBC: Personalized federated learning via mutually beneficial collaboration

被引:6
|
作者
Gong, Yanxia [1 ]
Li, Xianxian [1 ]
Wang, Li-e [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Personalized federated learning; Collaboration; Aggregation; AGGREGATION;
D O I
10.1016/j.comcom.2023.04.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data heterogeneity is a challenge of federated learning. Traditional federated learning aims to obtain a global model, but a single global model cannot meet the needs of all clients when the clients' local data are distributed differently. To alleviate this problem, we propose a mutually beneficial collaboration method for personalized federated learning (FedMBC), which provides each client with a personalized model by enhancing collaboration among similar clients. First, we use the task layer outputs and soft outputs of the client model to measure the similarity of the clients. Then, for each client, we adopt a dynamic aggregation method based on the similarity of clients on the server in each communication round to aggregate a model suitable for its local data distribution. That is, the aggregated model is a personalized model of the client. Furthermore, since the data heterogeneity and the different clients selected for each communication round may lead to slow convergence of the aggregated model, we adopt the aggregated model from the previous round in the local update stage of the client to accelerate the convergence of the model. Finally, we compare our method with different federated learning algorithms on various datasets in a variety of settings, and the results show that our method is superior to them in terms of test performance and communication efficiency. In particular, when the distributions of data among clients are diverse, FedMBC can improve the test accuracy by approximately 2.3% and reduce the number of communication rounds required by up to 35% compared with FedAvg on the CIFAR-10 dataset.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 50 条
  • [11] A lightweight and personalized edge federated learning model
    Peiyan Yuan
    Ling Shi
    Xiaoyan Zhao
    Junna Zhang
    Complex & Intelligent Systems, 2024, 10 : 3577 - 3592
  • [12] A lightweight and personalized edge federated learning model
    Yuan, Peiyan
    Shi, Ling
    Zhao, Xiaoyan
    Zhang, Junna
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 3577 - 3592
  • [13] Personalized federated learning with multiple classifier aggregation
    Zheng, Shaifeng
    Zhu, Qingling
    Lin, Qiuzhen
    Liu, Songbai
    Wong, Ka-Chun
    Li, Jianqiang
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [14] OVER-THE-AIR PERSONALIZED FEDERATED LEARNING
    Sami, Hasin Us
    Guler, Basak
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8777 - 8781
  • [15] Personalized Federated Few-Shot Learning
    Zhao, Yunfeng
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Guo, Maozu
    Zhang, Xiangliang
    Cui, Lizhen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2534 - 2544
  • [16] Personalized Collaborative Edge Caching With Federated Transfer Deep Reinforcement Learning
    Liu, Sanqiu
    Li, Qiang
    Pandharipande, Ashish
    Ge, Xiaohu
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (09) : 2096 - 2100
  • [17] Model Decomposition and Reassembly for Purified Knowledge Transfer in Personalized Federated Learning
    Zhang, Jie
    Guo, Song
    Ma, Xiaosong
    Xu, Wenchao
    Zhou, Qihua
    Guo, Jingcai
    Hong, Zicong
    Shan, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (01) : 379 - 393
  • [18] Personalized Federated Learning with Contextual Modulation and Meta-Learning
    Vettoruzzo, Anna
    Bouguelia, Mohamed-Rafik
    Rognvaldsson, Thorsteinn
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 842 - 850
  • [19] Exploiting Degradation Prior for Personalized Federated Learning in Real-World Image Super-Resolution
    Yang, Yue
    Ke, Liangjun
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 146 - 154
  • [20] Personalized Federated Learning on long-tailed data via knowledge distillation and generated features
    Lv, Fengling
    Qian, Pinxin
    Lu, Yang
    Wang, Hanzi
    PATTERN RECOGNITION LETTERS, 2024, 186 : 178 - 183