FedMBC: Personalized federated learning via mutually beneficial collaboration

被引:6
|
作者
Gong, Yanxia [1 ]
Li, Xianxian [1 ]
Wang, Li-e [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Personalized federated learning; Collaboration; Aggregation; AGGREGATION;
D O I
10.1016/j.comcom.2023.04.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data heterogeneity is a challenge of federated learning. Traditional federated learning aims to obtain a global model, but a single global model cannot meet the needs of all clients when the clients' local data are distributed differently. To alleviate this problem, we propose a mutually beneficial collaboration method for personalized federated learning (FedMBC), which provides each client with a personalized model by enhancing collaboration among similar clients. First, we use the task layer outputs and soft outputs of the client model to measure the similarity of the clients. Then, for each client, we adopt a dynamic aggregation method based on the similarity of clients on the server in each communication round to aggregate a model suitable for its local data distribution. That is, the aggregated model is a personalized model of the client. Furthermore, since the data heterogeneity and the different clients selected for each communication round may lead to slow convergence of the aggregated model, we adopt the aggregated model from the previous round in the local update stage of the client to accelerate the convergence of the model. Finally, we compare our method with different federated learning algorithms on various datasets in a variety of settings, and the results show that our method is superior to them in terms of test performance and communication efficiency. In particular, when the distributions of data among clients are diverse, FedMBC can improve the test accuracy by approximately 2.3% and reduce the number of communication rounds required by up to 35% compared with FedAvg on the CIFAR-10 dataset.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 50 条
  • [1] Rethinking Personalized Client Collaboration in Federated Learning
    Wu, Leijie
    Guo, Song
    Ding, Yaohong
    Wang, Junxiao
    Xu, Wenchao
    Zhan, Yufeng
    Kermarrec, Anne-Marie
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11227 - 11239
  • [2] pFedLHNs: Personalized Federated Learning via Local Hypernetworks
    Yi, Liping
    Shi, Xiaorong
    Wang, Nan
    Xu, Ziyue
    Wang, Gang
    Liu, Xiaoguang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 516 - 528
  • [3] pFedGF: Enabling Personalized Federated Learning via Gradient Fusion
    Wu, Xinghao
    Niu, Jianwei
    Liu, Xuefeng
    Ren, Tao
    Huang, Zhangmin
    Li, Zhetao
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 639 - 649
  • [4] Personalized Federated Learning via Gradient Modulation for Heterogeneous Text Summarization
    Pan, Rongfeng
    Wang, Jianzong
    Kong, Lingwei
    Huang, Zhangcheng
    Xiao, Jing
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [5] A Personalized Privacy Preserving Mechanism for Crowdsourced Federated Learning
    Xu, Yin
    Xiao, Mingjun
    Wu, Jie
    Tan, Haisheng
    Gao, Guoju
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (02) : 1568 - 1585
  • [6] Gradient Free Personalized Federated Learning
    Chen, Haoyu
    Zhang, Yuxin
    Zhao, Jin
    Wang, Xin
    Xu, Yuedong
    53RD INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2024, 2024, : 971 - 980
  • [7] Clustered Graph Federated Personalized Learning
    Gauthier, Francois
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    Huang, Yih-Fang
    Kuh, Anthony
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 744 - 748
  • [8] FedMCSA: Personalized federated learning via model components self-attention
    Guo, Qi
    Qi, Yong
    Qi, Saiyu
    Wu, Di
    Li, Qian
    NEUROCOMPUTING, 2023, 560
  • [9] A personalized federated cloud-edge collaboration framework via cross-client knowledge distillation
    Zhang, Shining
    Wang, Xingwei
    Zeng, Rongfei
    Zeng, Chao
    Li, Ying
    Huang, Min
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 165
  • [10] Networked Personalized Federated Learning Using Reinforcement Learning
    Gauthier, Francois
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4397 - 4402