Optical fiber quantum temperature sensing based on single photon interferometer

被引:5
作者
Peng, Yun [1 ,2 ]
Qin, Sen [1 ,2 ]
Zhang, Siqi [1 ,2 ]
Zhao, Yong [1 ,2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Hebei Key Lab Micronano Precis Opt Sensing & Measu, Qinhuangdao 066004, Peoples R China
关键词
Optical fiber quantum sensing; Temperature sensor; Single photon interferometer; The standard quantum limit; SENSOR; ENTANGLEMENT;
D O I
10.1016/j.optlaseng.2023.107611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A high precision optical fiber quantum temperature sensor based on single photon interferometer by combining the advantages of fiber interferometric structures and quantum sensing technology is designed. We define the measurement precision as the standard deviation of transmissivity, and the estimation strategy of Fisher informa-tion analysis is used to analyze whether the measurement precision is beyond the standard quantum limit. The findings of the experiments demonstrate that the proposed quantum sensor's measurement errors are entirely consistent with quantum theory and that the detection errors approach or even exceed the standard quantum limit. The suggested sensor has a temperature sensitivity of around 0.00115/ degrees C and excellent reversibility. The temperature resolution of the sensing system can be calculated to be 0.029 degrees C. In this work, both precision and resolution are good enough, it is possible to resolve small temperature changes, which offers a fresh approach for the development of high-end industrial and medical applications.
引用
收藏
页数:7
相关论文
共 36 条
  • [1] Quantum Metrology in Open Systems: Dissipative Cramer-Rao Bound
    Alipour, S.
    Mehboudi, M.
    Rezakhani, A. T.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (12)
  • [2] Bidirectional Bend Sensor Employing a Microfiber-Assisted U-Shaped Fabry-Perot Cavity
    Bai, Zhiyong
    Gao, Shecheng
    Deng, Mi
    Zhang, Zhe
    Li, Mingquan
    Zhang, Feng
    Liao, Changrui
    Wang, Ying
    Wang, Yiping
    [J]. IEEE PHOTONICS JOURNAL, 2017, 9 (03):
  • [3] Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit
    Boto, AN
    Kok, P
    Abrams, DS
    Braunstein, SL
    Williams, CP
    Dowling, JP
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (13) : 2733 - 2736
  • [4] QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER
    CAVES, CM
    [J]. PHYSICAL REVIEW D, 1981, 23 (08): : 1693 - 1708
  • [5] Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing
    Chen, Pengcheng
    Shu, Xuewen
    [J]. OPTICS EXPRESS, 2018, 26 (05): : 5292 - 5299
  • [6] A microfiber coupler tip thermometer
    Ding, Ming
    Wang, Pengfei
    Brambilla, Gilberto
    [J]. OPTICS EXPRESS, 2012, 20 (05): : 5402 - 5408
  • [7] Optimal Quantum Phase Estimation
    Dorner, U.
    Demkowicz-Dobrzanski, R.
    Smith, B. J.
    Lundeen, J. S.
    Wasilewski, W.
    Banaszek, K.
    Walmsley, I. A.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [8] Analysis of a distributed fiber-optic temperature sensor using single-photon detectors
    Dyer, Shellee D.
    Tanner, Michael G.
    Baek, Burm
    Hadfield, Robert H.
    Nam, Sae Woo
    [J]. OPTICS EXPRESS, 2012, 20 (04): : 3456 - 3466
  • [9] Quantum metrology
    Giovannetti, V
    Lloyd, S
    Maccone, L
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [10] Quantum-enhanced measurements: Beating the standard quantum limit
    Giovannetti, V
    Lloyd, S
    Maccone, L
    [J]. SCIENCE, 2004, 306 (5700) : 1330 - 1336