METTL3-Mediated m6A Modification Controls Splicing Factor Abundance and Contributes to Aggressive CLL

被引:12
作者
Wu, Yiming [1 ]
Jin, Meiling [1 ]
Fernandez, Mike [1 ]
Hart, Kevyn L. [1 ]
Liao, Aijun [1 ]
Ge, Xinzhou [2 ,3 ]
Fernandes, Stacey M. [4 ]
McDonald, Tinisha [5 ,6 ]
Chen, Zhenhua [1 ]
Roth, Daniel [7 ]
Ghoda, Lucy Y. [5 ,6 ]
Marcucci, Guido [5 ,6 ,8 ]
Kalkum, Markus [7 ]
Pillai, Raju K. [9 ]
V. Danilov, Alexey [8 ,10 ]
Li, Jingyi Jessica [2 ]
Chen, Jianjun [1 ]
Brown, Jennifer R. [4 ]
Rosen, Steven T. [8 ,10 ]
Siddiqi, Tanya [8 ,10 ]
Wang, Lili [10 ,11 ]
机构
[1] Beckman Res Inst, City Hope Natl Comprehens Canc Ctr, Dept Syst Biol, Monrovia, CA USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA USA
[4] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[5] City Hope Natl Comprehens Canc Ctr, Hematopoiet Tissue Biorepository, Duarte, CA USA
[6] City Hope Comprehens Canc Ctr, Beckman Res Inst, Dept Hematol Malignancies Translat Sci, Duarte, CA USA
[7] City Hope Natl Med Ctr, Diabet & Metab Res Inst, Beckman Res Inst, Dept Mol Imaging & Therapy, Duarte, CA USA
[8] City Hope Comprehens Canc Ctr, Dept Hematol & Hematopoiet Cell Transplantat, Duarte, CA USA
[9] City Hope Natl Comprehens Canc Ctr, Dept Pathol, Duarte, CA USA
[10] City Hope Comprehens Canc Ctr, Beckman Res Inst, Toni Stephenson Lymphoma Ctr, Duarte, CA USA
[11] City Hope Natl Canc Ctr, Syst Biol, 1218 S Fifth Ave, Monrovia, CA 91016 USA
来源
BLOOD CANCER DISCOVERY | 2023年 / 4卷 / 03期
关键词
RNA; TRANSLATION; EXPRESSION; MUTATIONS; SPLICEOSOME; LEUKEMIA; SF3B1; DATABASE; REVEALS; PROTEIN;
D O I
10.1158/2643-3230.BCD-22-0156
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
RNA splicing dysregulation underlies the onset and progression of cancers. In chronic lymphocytic leukemia (CLL), spliceosome mutations leading to aberrant splicing occur in similar to 20% of patients. However, the mechanism for splicing defects in spliceosome-unmutated CLL cases remains elusive. Through an integrative transcriptomic and proteomic analysis, we discover that proteins involved in RNA splicing are posttranscriptionally upregulated in CLL cells, resulting in splicing dysregulation. The abundance of splicing complexes is an independent risk fac-tor for poor prognosis. Moreover, increased splicing factor expression is highly correlated with the abundance of METTL3, an RNA methyltransferase that deposits N6-methyladenosine (m6A) on mRNA. METTL3 is essential for cell growth in vitro and in vivo and controls splicing factor protein expression in a methyltransferase-dependent manner through m6A modifi cation-mediated ribosome recycling and decoding. Our results uncover METTL3-mediated m6A modifi cation as a novel regulatory axis in driving splicing dysregulation and contributing to aggressive CLL.SIGNIFICANCE: METTL3 controls widespread splicing factor abundance via translational control of m6A-modifi ed mRNA, contributes to RNA splicing dysregulation and disease progression in CLL, and serves as a potential therapeutic target in aggressive CLL.
引用
收藏
页码:228 / 245
页数:18
相关论文
共 50 条
  • [31] The m6A Methyltransferase METTL3 Is Functionally Implicated in DLBCL Development by Regulating m6A Modification in PEDF
    Cheng, Yingying
    Fu, Yuanyuan
    Wang, Ying
    Wang, Jinbi
    FRONTIERS IN GENETICS, 2020, 11
  • [32] The effects of NCBP3 on METTL3-mediated m6A RNA methylation to enhance translation process in hypoxic cardiomyocytes
    Ye, Fei
    Wang, Xiaoyan
    Tu, San
    Zeng, Lixiong
    Deng, Xu
    Luo, Wenzhi
    Zhang, Zhihui
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (18) : 8920 - 8928
  • [33] METTL3-mediated m6A RNA modification promotes corneal neovascularization by upregulating the canonical Wnt pathway during HSV-1 infection
    Wang, Wenzhe
    Ye, Wei
    Chen, Si
    Tang, Yun
    Chen, Deyan
    Lu, Yan
    Wu, Zhiwei
    Huang, Zhenping
    Ge, Yirui
    CELLULAR SIGNALLING, 2023, 109
  • [34] METTL3-mediated m6A modification promotes processing and maturation of pri-miRNA-19a to facilitate nasopharyngeal carcinoma cell proliferation and invasion
    Gong, Yongqian
    Jiang, Qingshan
    Liu, Lijun
    Liao, Qingyun
    Yu, Jing
    Xiang, Zheng
    Luo, Xinggu
    PHYSIOLOGICAL GENOMICS, 2022, 54 (09) : 337 - 349
  • [35] METTL3-Mediated m6A Methylation Regulates Muscle Stem Cells and Muscle Regeneration by Notch Signaling Pathway
    Liang, Yu
    Han, Hui
    Xiong, Qiuchan
    Yang, Chunlong
    Wang, Lu
    Ma, Jieyi
    Lin, Shuibin
    Jiang, Yi-Zhou
    STEM CELLS INTERNATIONAL, 2021, 2021
  • [36] METTL3 Contributes to Osteosarcoma Progression by Increasing DANCR mRNA Stability via m6A Modification
    Zhou, Xinying
    Yang, Yang
    Li, Yuejun
    Liang, Guojun
    Kang, Dawei
    Zhou, Bing
    Li, Qingchu
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 9
  • [37] METTL3-mediated m6A modification of LINC00839 maintains glioma stem cells and radiation resistance by activating Wnt/β-catenin signaling
    Yin, Jianxing
    Ding, Fangshu
    Cheng, Zhangchun
    Ge, Xin
    Li, Yanhui
    Zeng, Ailiang
    Zhang, Junxia
    Yan, Wei
    Shi, Zhumei
    Qian, Xu
    You, Yongping
    Ding, Zhiliang
    Ji, Jing
    Wang, Xiefeng
    CELL DEATH & DISEASE, 2023, 14 (07)
  • [38] The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells
    Vu, Ly P.
    Pickering, Brian F.
    Cheng, Yuanming
    Zaccara, Sara
    Diu Nguyen
    Minuesa, Gerard
    Chou, Timothy
    Chow, Arthur
    Saletore, Yogesh
    MacKay, Matthew
    Schulman, Jessica
    Famulare, Christopher
    Patel, Minal
    Klimek, Virginia M.
    Garrett-Bakelman, Francine E.
    Melnick, Ari
    Carroll, Martin
    Mason, Christopher E.
    Jaffrey, Samie R.
    Kharas, Michael G.
    NATURE MEDICINE, 2017, 23 (11) : 1369 - +
  • [39] ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m6A modification to improve wound healing of diabetic foot ulcers
    Zhou, Jie
    Wei, Tianhong
    He, Zhiyou
    MOLECULAR MEDICINE, 2021, 27 (01)
  • [40] METTL3-Mediated m6A Modification of lncRNA MALAT1 Facilitates Prostate Cancer Growth by Activation of PI3K/AKT Signaling
    Mao, Yuanshen
    Li, Wenfeng
    Weng, YiMing
    Hua, Bao
    Gu, Xin
    Lu, Chao
    Xu, Bin
    Xu, Huan
    Wang, Zhong
    CELL TRANSPLANTATION, 2022, 31