Thermodynamically Stable Dual-Modified LiF&FeF3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities

被引:35
作者
Chu, Youqi [1 ,2 ,3 ]
Mu, Yongbiao [1 ,2 ,3 ]
Zou, Lingfeng [1 ,2 ,3 ]
Hu, Yan [1 ,2 ,3 ]
Cheng, Jie [4 ]
Wu, Buke [1 ,2 ,3 ]
Han, Meisheng [1 ,2 ,3 ]
Xi, Shibo [5 ]
Zhang, Qing [1 ,2 ,3 ]
Zeng, Lin [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Key Lab Adv Energy Storage, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Sch Sci, New Energy Technol Engn Lab Jiangsu Prov, Nanjing 210023, Jiangsu, Peoples R China
[5] Inst Chem & Engn Sci, 1 Pesek Rd, Singapore 627833, Singapore
基金
中国国家自然科学基金;
关键词
intergranular cracks; LiF&FeF3; lithium-ion battery; nanoscale structural degradation; oxygen vacancy; OXYGEN EVOLUTION; ENERGY-DENSITY; ION BATTERIES; PERFORMANCE; REDOX; OXIDE;
D O I
10.1002/adma.202212308
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pushing the limit of cutoff potentials allows nickel-rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one-step dual-modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8Co0.1Mn0.1O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of O alpha- (alpha<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual-modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high-performance lithium-ion batteries (LIBs).
引用
收藏
页数:12
相关论文
共 64 条
  • [1] Boron doped Ni-rich LiNi0.85Co0.10Mn0.05O2 cathode materials studied by structural analysis, solid state NMR, computational modeling, and electrochemical performance
    Amalraj, Susai Francis
    Raman, Ravikumar
    Chakraborty, Arup
    Leifer, Nicole
    Nanda, Raju
    Kunnikuruvan, Sooraj
    Kravchuk, Tatyana
    Grinblat, Judith
    Ezersky, Vladimir
    Sun, Rong
    Deepak, Francis Leonard
    Erk, Christoph
    Wu, Xiaohan
    Maiti, Sandipan
    Sclar, Hadar
    Goobes, Gil
    Major, Dan Thomas
    Talianker, Michael
    Markovsky, Boris
    Aurbach, Doron
    [J]. ENERGY STORAGE MATERIALS, 2021, 42 : 594 - 607
  • [2] Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1-yZnyO2 (0 &lt; y &lt; 0.23)
    Bai, Xue
    Sathiya, Mariyappan
    Mendoza-Sanchez, Beatriz
    Iadecola, Antonella
    Vergnet, Jean
    Dedryvere, Remi
    Saubanere, Matthieu
    Abakumov, Artem M.
    Rozier, Patrick
    Tarascon, Jean-Marie
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (32)
  • [3] Surface Modification of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries
    Becker, Dina
    Boerner, Markus
    Noelle, Roman
    Diehl, Marcel
    Klein, Sven
    Rodehorst, Uta
    Schmuch, Richard
    Winter, Martin
    Placke, Tobias
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) : 18404 - 18414
  • [4] Stabilizing Anionic Redox Chemistry in a Mn-Based Layered Oxide Cathode Constructed by Li-Deficient Pristine State
    Cao, Xin
    Li, Haifeng
    Qiao, Yu
    Jia, Min
    Li, Xiang
    Cabana, Jordi
    Zhou, Haoshen
    [J]. ADVANCED MATERIALS, 2021, 33 (02)
  • [5] Pseudo-Bonding and Electric-Field Harmony for Li-Rich Mn-Based Oxide Cathode
    Chen, Jun
    Zou, Guoqiang
    Deng, Wentao
    Huang, Zhaodong
    Gao, Xu
    Liu, Cheng
    Yin, Shouyi
    Liu, Huanqing
    Deng, Xinglan
    Tian, Ye
    Li, Jiayang
    Wang, Chiwei
    Wang, Di
    Wu, Hanwen
    Yang, Li
    Hou, Hongshuai
    Ji, Xiaobo
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)
  • [6] Chemical coupling constructs amorphous silica modified LiNi0.6Co0.2Mn0.2O2 cathode materials and its electrochemical performances
    Chen, Yongxiang
    Tang, Shuyun
    Deng, Shiyi
    Lei, Tongxing
    Li, Yunjiao
    Li, Wei
    Cao, Guolin
    Zhu, Jie
    Zhang, Jinping
    [J]. JOURNAL OF POWER SOURCES, 2019, 431 : 8 - 16
  • [7] Lithium Phosphonate Functionalized Polymer Coating for High-Energy Li[Ni0.8Co0.1Mn0.1]O2 with Superior Performance at Ambient and Elevated Temperatures
    Chen, Zhen
    Nguyen, Huu-Dat
    Zarrabeitia, Maider
    Liang, Hai-Peng
    Geiger, Dorin
    Kim, Jae-Kwang
    Kaiser, Ute
    Passerini, Stefano
    Iojoiu, Cristina
    Bresser, Dominic
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (41)
  • [8] Site-Selective In Situ Electrochemical Doping for Mn-Rich Layered Oxide Cathode Materials in Lithium-Ion Batteries
    Choi, Aram
    Lim, Jungwoo
    Kim, Hyung-Jin
    Jung, Sung Chul
    Lim, Hyung-Woo
    Kim, Hanseul
    Kwon, Mi-Sook
    Han, Young Kyu
    Oh, Seung M.
    Lee, Kyu Tae
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (11)
  • [9] Enhancement structural stability of LiNi0.8Co0.1Mn0.1O2 via S2- doping combine with Li2SO4 coating co-modification
    Chu, You-qi
    Hu, Yan
    Lai, An-jie
    Pan, Qi-chang
    Zheng, Feng-hua
    Huang, You-guo
    Wang, Hong-qiang
    Li, Qing-yu
    [J]. ELECTROCHIMICA ACTA, 2022, 409
  • [10] Construction of internal electric field to suppress oxygen evolution of Ni-rich cathode materials at a high cutoff voltage
    Chu, Youqi
    Lai, Anjie
    Pan, Qichang
    Zheng, Fenghua
    Huang, Youguo
    Wang, Hongqiang
    Li, Qingyu
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 114 - 125