Endoscopic Image Classification Based on Explainable Deep Learning

被引:29
作者
Mukhtorov, Doniyorjon [1 ]
Rakhmonova, Madinakhon [1 ]
Muksimova, Shakhnoza [1 ]
Cho, Young-Im [1 ]
机构
[1] Gachon Univ, Dept IT Convergence Engn, Seongnam Si 461701, South Korea
关键词
explainable ai; deep learning; classification; endoscopic image; CONVOLUTIONAL NEURAL-NETWORKS; COMPUTER-AIDED DETECTION; DIAGNOSIS; CANCER;
D O I
10.3390/s23063176
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning has achieved remarkably positive results and impacts on medical diagnostics in recent years. Due to its use in several proposals, deep learning has reached sufficient accuracy to implement; however, the algorithms are black boxes that are hard to understand, and model decisions are often made without reason or explanation. To reduce this gap, explainable artificial intelligence (XAI) offers a huge opportunity to receive informed decision support from deep learning models and opens the black box of the method. We conducted an explainable deep learning method based on ResNet152 combined with Grad-CAM for endoscopy image classification. We used an open-source KVASIR dataset that consisted of a total of 8000 wireless capsule images. The heat map of the classification results and an efficient augmentation method achieved a high positive result with 98.28% training and 93.46% validation accuracy in terms of medical image classification.
引用
收藏
页数:14
相关论文
共 54 条
[1]   A Transfer Learning Evaluation of Deep Neural Networks for Image Classification [J].
Abou Baker, Nermeen ;
Zengeler, Nico ;
Handmann, Uwe .
MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2022, 4 (01) :22-41
[2]   A Multi-Step Approach for Optically Active and Inactive Water Quality Parameter Estimation Using Deep Learning and Remote Sensing [J].
Ahmed, Mehreen ;
Mumtaz, Rafia ;
Anwar, Zahid ;
Shaukat, Arslan ;
Arif, Omar ;
Shafait, Faisal .
WATER, 2022, 14 (13)
[3]   An Efficient Approach Based on Privacy-Preserving Deep Learning for Satellite Image Classification [J].
Alkhelaiwi, Munirah ;
Boulila, Wadii ;
Ahmad, Jawad ;
Koubaa, Anis ;
Driss, Maha .
REMOTE SENSING, 2021, 13 (11)
[4]   Detection of Exceptional Malware Variants Using Deep Boosted Feature Spaces and Machine Learning [J].
Asam, Muhammad ;
Hussain, Shaik Javeed ;
Mohatram, Mohammed ;
Khan, Saddam Hussain ;
Jamal, Tauseef ;
Zafar, Amad ;
Khan, Asifullah ;
Ali, Muhammad Umair ;
Zahoora, Umme .
APPLIED SCIENCES-BASEL, 2021, 11 (21)
[5]   HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy [J].
Borgli, Hanna ;
Thambawita, Vajira ;
Smedsrud, Pia H. ;
Hicks, Steven ;
Jha, Debesh ;
Eskeland, Sigrun L. ;
Randel, Kristin Ranheim ;
Pogorelov, Konstantin ;
Lux, Mathias ;
Nguyen, Duc Tien Dang ;
Johansen, Dag ;
Griwodz, Carsten ;
Stensland, Hakon K. ;
Garcia-Ceja, Enrique ;
Schmidt, Peter T. ;
Hammer, Hugo L. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas .
SCIENTIFIC DATA, 2020, 7 (01)
[6]   Gastric Cancer Diagnosis with Mask R-CNN [J].
Cao, Guitao ;
Song, Wenli ;
Zhao, Zhenwei .
2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, :60-63
[7]   AlexNet Convolutional Neural Network for Disease Detection and Classification of Tomato Leaf [J].
Chen, Hsing-Chung ;
Widodo, Agung Mulyo ;
Wisnujati, Andika ;
Rahaman, Mosiur ;
Lin, Jerry Chun-Wei ;
Chen, Liukui ;
Weng, Chien-Erh .
ELECTRONICS, 2022, 11 (06)
[8]   Explainable Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization [J].
Esmaeili, Morteza ;
Vettukattil, Riyas ;
Banitalebi, Hasan ;
Krogh, Nina R. ;
Geitung, Jonn Terje .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (11)
[9]  
Fitzmaurice C, 2017, JAMA ONCOL, V3, P524, DOI [10.1001/jamaoncol.2016.5688, 10.1001/jamaoncol.2018.2706]
[10]  
Fonolla R, 2019, I S BIOMED IMAGING, P74, DOI [10.1109/isbi.2019.8759320, 10.1109/ISBI.2019.8759320]