Certifying Zeros of Polynomial Systems Using Interval Arithmetic

被引:9
作者
Breiding, Paul [1 ]
Rose, Kemal [2 ]
Timme, Sascha [3 ]
机构
[1] Univ Osnabruck, Albrechtstr 28A, Osnabruck, Niedersachsen, Germany
[2] MPI MiS Leipzig, Inselstr 22, Leipzig, Sachsen, Germany
[3] Tech Univ Berlin, Str 17 Juni 136, Berlin, Berlin, Germany
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2023年 / 49卷 / 01期
基金
欧洲研究理事会;
关键词
Datasets; neural networks; gaze detection; text tagging; HOMOTOPY CONTINUATION;
D O I
10.1145/3580277
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We establish interval arithmetic as a practical tool for certification in numerical algebraic geometry. Our software HomotopyContinuation.jl now has a built-in function certify, which proves the correctness of an isolated nonsingular solution to a square system of polynomial equations. The implementation rests on Krawczyk's method. We demonstrate that it dramatically outperforms earlier approaches to certification. We see this contribution as a powerful new tool in numerical algebraic geometry, which can make certification the default and not just an option.
引用
收藏
页数:14
相关论文
共 48 条
  • [31] TEST FOR EXISTENCE OF SOLUTIONS TO NONLINEAR-SYSTEMS
    MOORE, RE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) : 611 - 615
  • [32] Moore RE., 1966, INTERVAL ANAL
  • [33] COEFFICIENT-PARAMETER POLYNOMIAL CONTINUATION
    MORGAN, AP
    SOMMESE, AJ
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1989, 29 (02) : 123 - 160
  • [34] Numerical Synthesis of Six-Bar Linkages for Mechanical Computation
    Plecnik, Mark M.
    McCarthy, J. Michael
    [J]. JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2014, 6 (03):
  • [35] RGISSER U, 2013, ALGEBRAIC COMPLEXITY, V315
  • [36] Ronga Felice, 1997, REV MAT U COMPLUT MA, V10, P391
  • [37] Rump SM, 2010, ACTA NUMER, V19, P287, DOI 10.1017/S096249291000005X
  • [38] Rump Siegfried M., 1999, Developments in Reliable Computing, P77, DOI [10.1007/978-94-017-1247-7_7, DOI 10.1007/978-94-017-1247-7]
  • [39] Rump Siegfried M., 1983, P S NEW APPR SCI COM, P51
  • [40] Sommese AJ, 2005, NUMERICAL SOLUTION OF SYSTEMS OF POLYNOMIALS: ARISING IN ENGINEERING AND SCIENCE, P1, DOI 10.1142/9789812567727