Certifying Zeros of Polynomial Systems Using Interval Arithmetic

被引:9
作者
Breiding, Paul [1 ]
Rose, Kemal [2 ]
Timme, Sascha [3 ]
机构
[1] Univ Osnabruck, Albrechtstr 28A, Osnabruck, Niedersachsen, Germany
[2] MPI MiS Leipzig, Inselstr 22, Leipzig, Sachsen, Germany
[3] Tech Univ Berlin, Str 17 Juni 136, Berlin, Berlin, Germany
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2023年 / 49卷 / 01期
基金
欧洲研究理事会;
关键词
Datasets; neural networks; gaze detection; text tagging; HOMOTOPY CONTINUATION;
D O I
10.1145/3580277
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We establish interval arithmetic as a practical tool for certification in numerical algebraic geometry. Our software HomotopyContinuation.jl now has a built-in function certify, which proves the correctness of an isolated nonsingular solution to a square system of polynomial equations. The implementation rests on Krawczyk's method. We demonstrate that it dramatically outperforms earlier approaches to certification. We see this contribution as a powerful new tool in numerical algebraic geometry, which can make certification the default and not just an option.
引用
收藏
页数:14
相关论文
共 48 条
  • [11] TANGENT QUADRICS IN REAL 3-SPACE
    Brysiewicz, T.
    Fevola, C.
    Sturmfels, B.
    [J]. MATEMATICHE, 2021, 76 (02): : 355 - 367
  • [12] Brysiewicz T, 2020, Arxiv, DOI arXiv:2011.13860
  • [13] Effective Certification of Approximate Solutions to Systems of Equations Involving Analytic Functions
    Burr, Michael
    Lee, Kisun
    Leykin, Anton
    [J]. PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC '19), 2019, : 267 - 274
  • [14] Solving polynomial systems via homotopy continuation and monodromy
    Duff, Timothy
    Hill, Cvetelina
    Jensen, Anders
    Lee, Kisun
    Leykin, Anton
    Sommars, Jeff
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (03) : 1421 - 1446
  • [15] Early N., arXiv
  • [16] Phase stability analysis using interval Newton method with NRTL model
    Gecegormez, H
    Demirel, Y
    [J]. FLUID PHASE EQUILIBRIA, 2005, 237 (1-2) : 48 - 58
  • [17] Gopalan Balajit, 2005, RELIAB COMPUT, V1, P215
  • [18] Algorithm 921: alphaCertified: Certifying Solutions to Polynomial Systems
    Hauenstein, Jonathan D.
    Sottile, Frank
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (04):
  • [19] Higham NJ., 2002, ACCURACY STABILITY N
  • [20] A POLYHEDRAL METHOD FOR SOLVING SPARSE POLYNOMIAL SYSTEMS
    HUBER, B
    STURMFELS, B
    [J]. MATHEMATICS OF COMPUTATION, 1995, 64 (212) : 1541 - 1555