Certifying Zeros of Polynomial Systems Using Interval Arithmetic

被引:9
作者
Breiding, Paul [1 ]
Rose, Kemal [2 ]
Timme, Sascha [3 ]
机构
[1] Univ Osnabruck, Albrechtstr 28A, Osnabruck, Niedersachsen, Germany
[2] MPI MiS Leipzig, Inselstr 22, Leipzig, Sachsen, Germany
[3] Tech Univ Berlin, Str 17 Juni 136, Berlin, Berlin, Germany
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2023年 / 49卷 / 01期
基金
欧洲研究理事会;
关键词
Datasets; neural networks; gaze detection; text tagging; HOMOTOPY CONTINUATION;
D O I
10.1145/3580277
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We establish interval arithmetic as a practical tool for certification in numerical algebraic geometry. Our software HomotopyContinuation.jl now has a built-in function certify, which proves the correctness of an isolated nonsingular solution to a square system of polynomial equations. The implementation rests on Krawczyk's method. We demonstrate that it dramatically outperforms earlier approaches to certification. We see this contribution as a powerful new tool in numerical algebraic geometry, which can make certification the default and not just an option.
引用
收藏
页数:14
相关论文
共 48 条
  • [1] Agostini D, 2021, Arxiv, DOI arXiv:2107.10518
  • [2] Bates D.J., 2013, Bertini: Software for Numerical Algebraic Geometry
  • [3] Bender MR, 2022, Arxiv, DOI arXiv:2105.08472
  • [4] Julia: A Fresh Approach to Numerical Computing
    Bezanson, Jeff
    Edelman, Alan
    Karpinski, Stefan
    Shah, Viral B.
    [J]. SIAM REVIEW, 2017, 59 (01) : 65 - 98
  • [5] Boege Tobias, 2021, ARXIV
  • [6] Euclidean Distance Degree and Mixed Volume
    Breiding, P.
    Sottile, F.
    Woodcock, J.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (06) : 1743 - 1765
  • [7] Breiding P., 2020, NOT AM MATH SOC, V67, P30
  • [8] Breiding P, 2022, Arxiv, DOI [arXiv:2203.01694, arXiv:2203.01694, arXiv:2203.01694, arXiv:2203.01694]
  • [9] Equations for GL Invariant Families of Polynomials
    Breiding, Paul
    Hodges, Reuven
    Ikenmeyer, Christian
    Michalek, Mateusz
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (02) : 545 - 556
  • [10] HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia
    Breiding, Paul
    Timme, Sascha
    [J]. MATHEMATICAL SOFTWARE - ICMS 2018, 2018, 10931 : 458 - 465