L(2; 1; 1)-labeling of interval graphs

被引:1
|
作者
Amanathulla, Sk. [1 ]
Bera, Biswajit [2 ]
Pal, Madhumangal [3 ]
机构
[1] Raghunathpur Coll, Dept Math, Purulia 723121, West Bengal, India
[2] Kabi Jagadram Roy Govt Gen Degree Coll, Dept Math, Bankura 722143, West Bengal, India
[3] Vidyasagar Univ, Dept Appl Math Oceanol & Comp Programming, Midnapore 721102, West Bengal, India
来源
INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY | 2022年 / 14卷 / 01期
关键词
L211-labeling; interval graph; efficient algorithm; frequency assignment; CODE ASSIGNMENT; SQUARE;
D O I
10.1142/S2661335222500034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
L(r; s; t)-labeling problem (Lrst-LP) is an important topic in discrete mathematics due to its various applications, like in frequency assignment in mobile communication systems, signal processing, circuit design, etc. L211 -LP is a special case of Lrst-LP. An L211-labeling (L211L) of a graph G = (V ; E) is a mapping F : V-> {0; 1; 2; ...} such that IF(xi) -F(eta)I >= 2 if and only if d(xi; eta) = 1, IF(xi) -z(eta)I > 1 if d(xi; eta) = 2 or 3, where d(xi; eta) is the distance between the nodes xi and eta. In this work, we have determined the upper bound of L211L for interval graph (IG) and obtained a tighter upper bound which is 4.6, -2. Also, we proposed an efficient algorithm to label any IG by L211L and also computed the time complexity of the proposed algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] On the Cubicity of Interval Graphs
    Chandran, L. Sunil
    Francis, Mathew C.
    Sivadasan, Naveen
    GRAPHS AND COMBINATORICS, 2009, 25 (02) : 169 - 179
  • [42] Dotted Interval Graphs
    Aumann, Yonatan
    Lewenstein, Moshe
    Melamud, Oren
    Pinter, Ron
    Yakhini, Zohar
    ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (02)
  • [43] A matrix characterization of interval and proper interval graphs
    Mertzios, George B.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 332 - 337
  • [44] (2,1)-Total Labeling of Cube Connected Cycle
    Sethuraman, G.
    Velankanni, A.
    UTILITAS MATHEMATICA, 2018, 109 : 63 - 82
  • [45] Distance Two Surjective Labelling of Paths and Interval Graphs
    Amanathulla, Sk
    Muhiuddin, G.
    Al-Kadi, D.
    Pal, Madhumangal
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [46] Minimally tough chordal graphs with toughness at most 1/2
    Katona, Gyula Y.
    Khan, Humara
    DISCRETE MATHEMATICS, 2024, 347 (08)
  • [47] Optimal algorithms for interval graphs
    Wang, YL
    Chiang, KC
    Yu, MS
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 1998, 14 (02) : 449 - 459
  • [48] Exactly Hittable Interval Graphs
    Nisha, K. K.
    Narayanaswamy, N. S.
    Dhannya, S. M.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2023, 25 (03)
  • [49] Mixed unit interval graphs
    Dourado, Mitre C.
    Van Bang Le
    Protti, Fabio
    Rautenbach, Dieter
    Szwarcfiter, Jayme L.
    DISCRETE MATHEMATICS, 2012, 312 (22) : 3357 - 3363
  • [50] Enumeration of nonisomorphic interval graphs and nonisomorphic permutation graphs
    Yamazaki, Kazuaki
    Saitoh, Toshiki
    Kiyomi, Masashi
    Uehara, Ryuhei
    THEORETICAL COMPUTER SCIENCE, 2020, 806 (806) : 310 - 322