L(2; 1; 1)-labeling of interval graphs

被引:1
|
作者
Amanathulla, Sk. [1 ]
Bera, Biswajit [2 ]
Pal, Madhumangal [3 ]
机构
[1] Raghunathpur Coll, Dept Math, Purulia 723121, West Bengal, India
[2] Kabi Jagadram Roy Govt Gen Degree Coll, Dept Math, Bankura 722143, West Bengal, India
[3] Vidyasagar Univ, Dept Appl Math Oceanol & Comp Programming, Midnapore 721102, West Bengal, India
来源
INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY | 2022年 / 14卷 / 01期
关键词
L211-labeling; interval graph; efficient algorithm; frequency assignment; CODE ASSIGNMENT; SQUARE;
D O I
10.1142/S2661335222500034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
L(r; s; t)-labeling problem (Lrst-LP) is an important topic in discrete mathematics due to its various applications, like in frequency assignment in mobile communication systems, signal processing, circuit design, etc. L211 -LP is a special case of Lrst-LP. An L211-labeling (L211L) of a graph G = (V ; E) is a mapping F : V-> {0; 1; 2; ...} such that IF(xi) -F(eta)I >= 2 if and only if d(xi; eta) = 1, IF(xi) -z(eta)I > 1 if d(xi; eta) = 2 or 3, where d(xi; eta) is the distance between the nodes xi and eta. In this work, we have determined the upper bound of L211L for interval graph (IG) and obtained a tighter upper bound which is 4.6, -2. Also, we proposed an efficient algorithm to label any IG by L211L and also computed the time complexity of the proposed algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Optimal L(2,1)-labeling of strong products of cycles
    Jha, PK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (04): : 498 - 500
  • [22] L(3,2,1)-labeling problem of square of path
    Amanathulla, Sk
    Khatun, Jasminara
    Pal, Madhumangal
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2023, 15 (01):
  • [23] L(3,2,1)-labeling of triangular and toroidal grids
    Shao, Zehui
    Vesel, Aleksander
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2015, 23 (03) : 659 - 673
  • [24] L(2,1)-labelings on the modular product of two graphs
    Shao, Zhendong
    Solis-Oba, Roberto
    THEORETICAL COMPUTER SCIENCE, 2013, 487 : 74 - 81
  • [25] Optimal frequency assignment and planar list L(2,1)-labeling
    Zhu, Haiyang
    Zhu, Junlei
    Liu, Ying
    Wang, Shuling
    Huang, Danjun
    Miao, Lianying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (04) : 2748 - 2761
  • [26] L(2, 1)-LABELING OF THE CARTESIAN AND STRONG PRODUCT OF TWO DIRECTED CYCLES
    Shao, Zehui
    Jiang, Huiqin
    Vesel, Aleksander
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2018, 1 (01): : 49 - 61
  • [27] L(0, 1)-Labelling of Trapezoid Graphs
    Paul S.
    Pal M.
    Pal A.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 599 - 610
  • [28] The Δ2-conjecture for L(2,1)-labelings is true for total graphs
    Duan, Ziming
    Lv, Pingli
    Miao, Lianying
    Miao, Zhengke
    Wang, Cuiqi
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1491 - 1494
  • [29] Optimal channel assignment and L(p,1)-labeling
    Zhu, Junlei
    Bu, Yuehua
    Pardalos, Miltiades P.
    Du, Hongwei
    Wang, Huijuan
    Liu, Bin
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 539 - 552
  • [30] On the Upper Bounds of L(2,1)-Labelings on Cartesian Sum of Graphs
    Shao, Zhendong
    Averbakh, Igor
    ARS COMBINATORIA, 2020, 153 : 227 - 243