A dual-balanced network for long-tail distribution object detection

被引:0
|
作者
Gong, Huiyun [1 ]
Li, Yeguang [2 ]
Dong, Jian [1 ,3 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[2] Management Changchun Univ Technol, Sch Econ, Jilin, Peoples R China
[3] China Elect Standardizat Inst, Beijing, Peoples R China
关键词
computer vision; learning (artificial intelligence); object detection; SMOTE;
D O I
10.1049/cvi2.12182
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection on datasets with imbalanced distributions (i.e. long-tail distributions) dataset is a significantly challenging task. Some re-balancing solutions, such as re-weighting and re-sampling have two main disadvantages. First, re-balancing strategies only utilise a coarse-grained global threshold to suppress some of the most influential categories, while overlooking locally influential categories. Second, very few studies have specifically designed algorithms for object detection tasks under long-tail distribution. To address these two issues, a dual-balanced network for fine-grained re-balancing object detection is proposed. Our re-balancing strategies are both in proposal and classification logic, corresponding to two sub-networks, the Balance Region Proposal Network (BRPN) and the Balance Classification Network (BCN). The BRPN sub-network equalises the number of proposals in the background and foreground by reducing the sampling probability of simple backgrounds, and the BCN sub-network equalises the logic between head and tail categories by globally suppressing negative gradients and locally fixing the over-suppressed negative gradients. In addition, the authors advise a balance binary cross entropy loss to jointly re-balance the entire network. This design can be generalised to different two-stage object detection frameworks. The experimental mAP result of 26.40% on this LVIS-v0.5 dataset outperforms most SOTA methods.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 41 条
  • [41] Three-stream RGB-D salient object detection network based on cross-level and cross-modal dual-attention fusion
    Meng, Lingbing
    Yuan, Mengya
    Shi, Xuehan
    Liu, Qingqing
    Cheng, Fei
    Li, Lingli
    IET IMAGE PROCESSING, 2023, 17 (11) : 3292 - 3308