共 41 条
A dual-balanced network for long-tail distribution object detection
被引:0
|作者:
Gong, Huiyun
[1
]
Li, Yeguang
[2
]
Dong, Jian
[1
,3
]
机构:
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[2] Management Changchun Univ Technol, Sch Econ, Jilin, Peoples R China
[3] China Elect Standardizat Inst, Beijing, Peoples R China
关键词:
computer vision;
learning (artificial intelligence);
object detection;
SMOTE;
D O I:
10.1049/cvi2.12182
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Object detection on datasets with imbalanced distributions (i.e. long-tail distributions) dataset is a significantly challenging task. Some re-balancing solutions, such as re-weighting and re-sampling have two main disadvantages. First, re-balancing strategies only utilise a coarse-grained global threshold to suppress some of the most influential categories, while overlooking locally influential categories. Second, very few studies have specifically designed algorithms for object detection tasks under long-tail distribution. To address these two issues, a dual-balanced network for fine-grained re-balancing object detection is proposed. Our re-balancing strategies are both in proposal and classification logic, corresponding to two sub-networks, the Balance Region Proposal Network (BRPN) and the Balance Classification Network (BCN). The BRPN sub-network equalises the number of proposals in the background and foreground by reducing the sampling probability of simple backgrounds, and the BCN sub-network equalises the logic between head and tail categories by globally suppressing negative gradients and locally fixing the over-suppressed negative gradients. In addition, the authors advise a balance binary cross entropy loss to jointly re-balance the entire network. This design can be generalised to different two-stage object detection frameworks. The experimental mAP result of 26.40% on this LVIS-v0.5 dataset outperforms most SOTA methods.
引用
收藏
页码:565 / 575
页数:11
相关论文