Ammonia-Oxidizing Bacteria Maintain Abundance but Lower amoA-Gene Expression during Cold Temperature Nitrification Failure in a Full-Scale Municipal Wastewater Treatment Plant

被引:5
|
作者
Johnston, Juliet [1 ,2 ]
Du, Zhe [1 ,3 ]
Behrens, Sebastian [1 ,4 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA
[3] Chinese Res Inst Environm Sci, Ctr Environm Hlth Risk Assessment & Res, Beijing, Peoples R China
[4] Univ Minnesota, BioTechnol Inst, St Paul, MN 55455 USA
来源
MICROBIOLOGY SPECTRUM | 2023年 / 11卷 / 02期
基金
美国国家科学基金会;
关键词
AOB; activated sludge; ammonia oxidation; nitrification; wastewater treatment; MICROBIAL COMMUNITY COMPOSITION; IN-SITU HYBRIDIZATION; MESSENGER-RNA LEVELS; ACTIVATED-SLUDGE; QUANTITATIVE-ANALYSIS; QUANTIFICATION; ARCHAEA; INDUSTRIAL; DIVERSITY; OXIDATION;
D O I
10.1128/spectrum.02571-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The diverse microbial community of activated sludge used in biological treatment systems exhibits dynamic seasonal shifts in community composition and activity. Many wastewater treatment plants in temperate/continental climates experience seasonal cold temperature nitrification failure. "Seasonal nitrification failure" is the discharge of elevated concentrations of ammonia (greater than 4 mg/liter) with treated wastewater during the winter (influent wastewater temperatures below 13 degrees C). In this study, we explore the relationship between community structure and transcriptional activity of ammonia-oxidizing bacteria during cold temperature nitrification failure in three parallel full-scale sequencing batch reactors (SBRs) treating municipal wastewater. In the three reactors, ammonia concentrations increased with declines in wastewater temperature below 15 degrees C. We quantified and sequenced 16S rRNA and ammonia monooxygenase (amoA) gene fragments in DNA and RNA extracts from activated sludge samples collected from the SBRs during the warmer seasons (summer and fall) and when water temperatures were below 15 degrees C (winter and spring). Taxonomic community composition of amoA genes and transcripts did not vary much between the warmer and colder seasons. However, we observed significant differences in amoA transcript copy numbers between fall (highest) and spring (lowest). Ammonia-oxidizing bacteria of the genus Nitrosomonas sp. could maintain their population abundance despite lowering their amoA gene expression during winter and spring. In spite of relatively low population abundance, an amoA amplicon sequence variant (ASV) cluster identified as most similar to the amoA gene of Nitrosospira briensis showed the highest amoA transcript-to-gene ratio throughout all four seasons, indicating that some nitrifiers remain active at wastewater temperatures below 15 degrees C. Our results show that 16S rRNA and amoA gene copy numbers are limited predictors of cell activity. To optimize function and performance of mixed community bioprocesses, we need to collect high-resolution quantitative transcriptomic and potentially proteomic data to resolve the response of individual species to changes in environmental parameters in engineered systems.IMPORTANCE The diverse microbial community of activated sludge used in biological treatment systems exhibits dynamic seasonal shifts in community composition and activity. Many wastewater treatment plants in temperate/continental climates experience seasonal cold temperature nitrification failure. "Seasonal nitrification failure" is the discharge of elevated concentrations of ammonia (greater than 4 mg/liter) with treated wastewater during the winter (influent wastewater temperatures below 13 degrees C). This study aims at expanding our understanding of how ammonia-oxidizing bacteria in activated sludge change in activity and growth across seasons. We quantified the ammonia monooxygenase (amoA) gene and transcript copy numbers using real-time PCR and sequenced the amoA amplicons to reveal community structure and activity changes of nitrifying microbial populations during seasonal nitrification failure in three full-scale sequencing batch reactors (SRBs) treating municipal wastewater. Relevant findings presented in this study contribute to explain seasonal nitrification performance variability in SRBs.
引用
收藏
页数:15
相关论文
共 13 条
  • [11] Incorporation of 13C-HCO3- by ammonia-oxidizing archaea and bacteria during ammonia oxidation of sludge from a municipal wastewater treatment plant
    Pornkulwat, Preeyaporn
    Kurisu, Futoshi
    Soonglerdsongpha, Suwat
    Banjongproo, Pathan
    Srithep, Papitchaya
    Limpiyakorn, Tawan
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (24) : 10767 - 10777
  • [12] Seasonal Prevalence of Ammonia-Oxidizing Archaea in a Full-Scale Municipal Wastewater Treatment Plant Treating Saline Wastewater Revealed by a 6-Year Time-Series Analysis
    Wang, Yulin
    Qin, Wei
    Jiang, Xiaotao
    Ju, Feng
    Mao, Yanping
    Zhang, Anni
    Stahl, David A.
    Zhang, Tong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (04) : 2662 - 2673
  • [13] Dissolved oxygen concentrations affect the function but not the relative abundance of nitrifying bacterial populations in full-scale municipal wastewater treatment bioreactors during cold weather
    Kim, Taegyu
    Hite, Molly
    Rogacki, Larry
    Sealock, Adam W.
    Sprouse, George
    Novak, Paige J.
    LaPara, Timothy M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 781