Sensitivity analysis using bias functions for studies extending inferences from a randomized trial to a target population

被引:21
作者
Dahabreh, Issa J. [1 ,2 ,3 ]
Robins, James M. [1 ,2 ,3 ]
Haneuse, Sebastien J. -P. A. [2 ]
Saeed, Iman [4 ]
Robertson, Sarah E. [1 ,2 ]
Stuart, Elizabeth A. [5 ]
Hernan, Miguel A. [1 ,2 ,3 ,6 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, CAUSALab, Boston, MA USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[4] Brown Univ, Ctr Evidence Synth Hlth, Sch Publ Hlth, Dept Hlth Serv Policy & Practice, Providence, RI USA
[5] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth Biostat & Hlth Policy & Manageme, Baltimore, MD USA
[6] Harvard MIT, Div Hlth Sci & Technol, Boston, MA USA
基金
美国医疗保健研究与质量局; 美国国家卫生研究院;
关键词
bias analysis; double robustness; g-formula; generalizability; inverse probability weighting; sensitivity analysis; transportability; SEMIPARAMETRIC ESTIMATION; PROPENSITY SCORE; CLINICAL-TRIALS; REGRESSION; EFFICIENCY; COVARIATE; THERAPY; MODELS;
D O I
10.1002/sim.9550
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extending (i.e., generalizing or transporting) causal inferences from a randomized trial to a target population requires assumptions that randomized and nonrandomized individuals are exchangeable conditional on baseline covariates. These assumptions are made on the basis of background knowledge, which is often uncertain or controversial, and need to be subjected to sensitivity analysis. We present simple methods for sensitivity analyses that directly parameterize violations of the assumptions using bias functions and do not require detailed background knowledge about specific unknown or unmeasured determinants of the outcome or modifiers of the treatment effect. We show how the methods can be applied to non-nested trial designs, where the trial data are combined with a separately obtained sample of nonrandomized individuals, as well as to nested trial designs, where the trial is embedded within a cohort sampled from the target population.
引用
收藏
页码:2029 / 2043
页数:15
相关论文
共 46 条
[1]  
[Anonymous], 2009, Applying Quantitative Bias Analysis to Epidemiologic Data
[2]   The Women's Interagency HIV Study [J].
Barkan, SE ;
Melnick, SL ;
Preston-Martin, S ;
Weber, K ;
Kalish, LA ;
Miotti, P ;
Young, M ;
Greenblatt, R ;
Sacks, H ;
Feldman, J .
EPIDEMIOLOGY, 1998, 9 (02) :117-125
[3]  
Bickel P. J., 1993, Efficient and adaptive estimation for semiparametric models
[4]  
Boos DD, 2013, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-1-4614-4818-1
[5]   On the semi-parametric efficiency of logistic regression under case-control sampling [J].
Breslow, NE ;
Robins, JM ;
Wellner, JA .
BERNOULLI, 2000, 6 (03) :447-455
[6]   Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures [J].
Brumback, BA ;
Hernán, MA ;
Haneuse, SJPA ;
Robins, JM .
STATISTICS IN MEDICINE, 2004, 23 (05) :749-767
[7]   Generalizing Evidence From Randomized Clinical Trials to Target Populations [J].
Cole, Stephen R. ;
Stuart, Elizabeth A. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 172 (01) :107-115
[8]  
CORNFIELD J, 1959, JNCI-J NATL CANCER I, V22, P173
[9]  
Dahabreh I.J., 2019, GENERALIZING CAUSAL
[10]   Study Designs for Extending Causal Inferences From a Randomized Trial to a Target Population [J].
Dahabreh, Issa J. ;
Haneuse, Sebastien J-P A. ;
Robins, James M. ;
Robertson, Sarah E. ;
Buchanan, Ashley L. ;
Stuart, Elizabeth A. ;
Hernan, Miguel A. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (08) :1632-1642