Simulation of memristive crossbar arrays for seizure detection and prediction using parallel Convolutional Neural Networks

被引:3
|
作者
Li, Chenqi [1 ]
Lammie, Corey [2 ]
Amirsoleimani, Amirali [3 ]
Azghadi, Mostafa Rahimi [2 ]
Genov, Roman [4 ]
机构
[1] Univ Toronto, Div Engn Sci, 42 St George St, Toronto, ON M5S 2E4, Canada
[2] James Cook Univ, Coll Sci & Engn, 1 James Cook Dr, Townsville, Qld 4811, Australia
[3] York Univ, Dept Elect Engn & Comp Sci, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[4] Univ Toronto, Dept Elect & Comp Engn, 42 St George St, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CNN; Seizure detection; Seizure prediction; EEG; RRAM; Memristive crossbar array;
D O I
10.1016/j.simpa.2023.100473
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For epileptic seizure detection and prediction, to address the computational bottleneck of the von Neumann architecture, we develop an in-memory memristive crossbar-based accelerator simulator. The simulator software is composed of a Python-based neural network training component and a MATLAB-based memristive crossbar array component. The software provides a baseline network for developing deep learning-based signal processing tasks, as well as a platform to investigate the impact of weight mapping schemes and device and peripheral circuitry non-idealities.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Seizure Detection and Prediction by Parallel Memristive Convolutional Neural Networks
    Li, Chenqi
    Lammie, Corey
    Dong, Xuening
    Amirsoleimani, Amirali
    Azghadi, Mostafa Rahimi
    Genov, Roman
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2022, 16 (04) : 609 - 625
  • [2] Epileptic Seizure Detection using Spectral Transformation and Convolutional Neural Networks
    Cleatus T.S.
    Thungamani M.
    Journal of The Institution of Engineers (India): Series B, 2022, 103 (04) : 1115 - 1125
  • [3] Benchmarking RRAM Crossbar Arrays for Epileptic Seizure Prediction
    Khan, Ahmedul
    Varnosfaderani, Shiva Maleki
    Alhawari, Mohammad
    Tutuncuoglu, Gozde
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 1314 - 1318
  • [4] Epileptic seizure prediction based on multiresolution convolutional neural networks
    Ibrahim, Ali K.
    Zhuang, Hanqi
    Tognoli, Emmanuelle
    Ali, Ali Muhamed
    Erdol, Nurgun
    FRONTIERS IN SIGNAL PROCESSING, 2023, 3
  • [5] Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks
    Hu W.
    Cao J.
    Lai X.
    Liu J.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (11) : 15485 - 15495
  • [6] Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
    Nhan Duy Truong
    Anh Duy Nguyen
    Kuhlmann, Levin
    Bonyadi, Mohammad Reza
    Yang, Jiawei
    Ippolito, Samuel
    Kavehei, Omid
    NEURAL NETWORKS, 2018, 105 : 104 - 111
  • [7] Learning graph in graph convolutional neural networks for robust seizure prediction
    Lian, Qi
    Qi, Yu
    Pan, Gang
    Wang, Yueming
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (03)
  • [8] Semi-dilated convolutional neural networks for epileptic seizure prediction
    Hussein, Ramy
    Lee, Soojin
    Ward, Rabab
    McKeown, Martin J.
    NEURAL NETWORKS, 2021, 139 (139) : 212 - 222
  • [9] Automatic seizure detection by convolutional neural networks with computational complexity analysis
    Cimr, Dalibor
    Fujita, Hamido
    Tomaskova, Hana
    Cimler, Richard
    Selamat, Ali
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 229
  • [10] Automated inter-patient seizure detection using multichannel Convolutional and Recurrent Neural Networks
    Craley, Jeff
    Johnson, Emily
    Jouny, Christophe
    Venkataraman, Archana
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 64