Advantages and Limitations of Quantum Routing

被引:9
作者
Bapat, Aniruddha [1 ,2 ,3 ,4 ]
Childs, Andrew M. [2 ,5 ,6 ]
Gorshkov, Alexey V. [2 ,3 ]
Schoute, Eddie [2 ,5 ,6 ,7 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[5] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[7] Los Alamos Natl Lab, Comp Computat Stat Sci Div, Los Alamos, NM 87545 USA
来源
PRX QUANTUM | 2023年 / 4卷 / 01期
关键词
CIRCUITS; COMMUNICATION; BOUNDS;
D O I
10.1103/PRXQuantum.4.010313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The SWAP gate is a ubiquitous tool for moving information on quantum hardware, yet it can be considered a classical operation because it does not entangle product states. Genuinely quantum operations could outperform SWAP for the task of permuting qubits within an architecture, which we call routing. We consider quantum routing in two models: (i) allowing arbitrary two-qubit unitaries, or (ii) allowing Hamiltonians with norm-bounded interactions. We lower bound the circuit depth or time of quantum routing in terms of spectral properties of graphs representing the architecture interaction constraints, and give a generalized upper bound for all simple connected n-vertex graphs. In particular, we give conditions for a superpolynomial classical-quantum routing separation, which exclude graphs with a small spectral gap and graphs of bounded degree. Finally, we provide examples of a quadratic separation between gate-based and Hamiltonian routing models with a constant number of local ancillas per qubit and of an O (n) speedup if we also allow fast local interactions.
引用
收藏
页数:20
相关论文
共 71 条
[1]  
Abraham Hector., 2019, QISKIT OPEN SOURCE F
[2]   Mirror inversion of quantum states in linear registers [J].
Albanese, C ;
Christandl, M ;
Datta, N ;
Ekert, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (23) :230502-1
[3]   ROUTING PERMUTATIONS ON GRAPHS VIA MATCHINGS [J].
ALON, N ;
CHUNG, FRK ;
GRAHAM, RL .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) :513-530
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Quantum skew divergence [J].
Audenaert, Koenraad M. R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
[6]   Nonperturbative Entangling Gates between Distant Qubits Using Uniform Cold Atom Chains [J].
Banchi, Leonardo ;
Bayat, Abolfazl ;
Verrucchi, Paola ;
Bose, Sougato .
PHYSICAL REVIEW LETTERS, 2011, 106 (14)
[7]   New Results on Routing via Matchings on Graphs [J].
Banerjee, Indranil ;
Richards, Dana .
FUNDAMENTALS OF COMPUTATION THEORY, FCT 2017, 2017, 10472 :69-81
[8]  
Bapat A., 2021, QUANTUM, V5, P533
[9]   Nearly optimal time-independent reversal of a spin chain [J].
Bapat, Aniruddha ;
Schoute, Eddie ;
Gorshkov, Alexey, V ;
Childs, Andrew M. .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)
[10]   Efficient distributed quantum computing [J].
Beals, Robert ;
Brierley, Stephen ;
Gray, Oliver ;
Harrow, Aram W. ;
Kutin, Samuel ;
Linden, Noah ;
Shepherd, Dan ;
Stather, Mark .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153)