For a graph G and a family of graphs F, the Turan number ex(G, F) is the maximum number of edges an F-free subgraph of G can have. We prove that ex(G, F) ≥ ex(Kr, F) if the chromatic number of G is r and F is a family of connected graphs. This result answers a question raised by Briggs and Cox ["Inverting the Turan problem', Discrete Math. 342(7) (2019), 1865-1884] about the inverse Turan number for all connected graphs.

被引:0
作者
He, Zhen [1 ,2 ]
Lv, Zequn [1 ,2 ]
Zhu, Xiutao [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] MTA Reny Inst, Budapest, Hungary
[3] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
inverse Turan problem; chromatic number; connected graph;
D O I
10.1017/S0004972722001319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G and a family of graphs , the Turan number is the maximum number of edges an -free subgraph of G can have. We prove that if the chromatic number of G is r and is a family of connected graphs. This result answers a question raised by Briggs and Cox ['Inverting the Turan problem', Discrete Math.342(7) (2019), 1865-1884] about the inverse Turan number for all connected graphs.
引用
收藏
页码:200 / 204
页数:5
相关论文
共 12 条
[1]   Bipartite subgraphs [J].
Alon, N .
COMBINATORICA, 1996, 16 (03) :301-311
[2]   Inverting the Turan problem [J].
Briggs, Joseph ;
Cox, Christopher .
DISCRETE MATHEMATICS, 2019, 342 (07) :1865-1884
[3]   Extremal C4-Free/C5-Free Planar Graphs [J].
Dowden, Chris .
JOURNAL OF GRAPH THEORY, 2016, 83 (03) :213-230
[4]  
Erdos, 1946, STUD SCI MATH HUNG, V1, P51
[5]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[6]  
Erds P., 1984, GRAPH THEORY COMBINA, P1
[7]   Star forests, dominating sets and Ramsey-type problems [J].
Ferneyhough, S ;
Haas, R ;
Hanson, D ;
MacGillivray, G .
DISCRETE MATHEMATICS, 2002, 245 (1-3) :255-262
[8]   LARGE SUBGRAPHS WITHOUT SHORT CYCLES [J].
Foucaud, F. ;
Krivelevich, M. ;
Perarnau, G. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) :65-78
[9]   LARGE TRIANGLE-FREE SUBGRAPHS IN GRAPHS WITHOUT K4 [J].
FRANKL, P ;
RODL, V .
GRAPHS AND COMBINATORICS, 1986, 2 (02) :135-144
[10]   Inverse Turan numbers [J].
Gyori, Ervin ;
Salia, Nika ;
Tompkins, Casey ;
Zamora, Oscar .
DISCRETE MATHEMATICS, 2022, 345 (05)