A class of elliptic quasi-variational-hemivariational inequalities with applications

被引:8
作者
Migorski, Stanislaw [1 ,2 ]
Yao, Jen-Chih [3 ]
Zeng, Shengda [4 ,5 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[4] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Guangxi, Peoples R China
[5] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Variational-hemivariational inequality; Variational inequality; Clarke subgradient; Mosco convergence; Fixed point; CONVEX-SETS;
D O I
10.1016/j.cam.2022.114871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a class of quasi-variational-hemivariational inequalities in reflexive Banach spaces. The inequalities contain a convex potential, a locally Lipschitz superpotential, and a solution-dependent set of constraints. Solution existence and compactness of the solution set to the inequality problem are established based on the Kakutani-Ky Fan-Glicksberg fixed point theorem. Two examples of the interior and boundary semipermeability models illustrate the applicability of our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Directional differentiability for elliptic quasi-variational inequalities of obstacle type [J].
Alphonse, Amal ;
Hintermueller, Michael ;
Rautenberg, Carlos N. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[2]  
[Anonymous], 2000, Classics in Applied Mathematics
[3]  
Baiocchi C., 1984, Variational and Quasi Variational Inequalities
[4]  
Barbu V., 1984, Optimal Control of Variational Inequalities
[5]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[7]   Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems [J].
Cen, Jinxia ;
Khan, Akhtar A. ;
Motreanu, Dumitru ;
Zeng, Shengda .
INVERSE PROBLEMS, 2022, 38 (06)
[8]   Simultaneous distributed-boundary optimal control problems driven by nonlinear complementarity systems [J].
Cen, Jinxia ;
Haddad, Tahar ;
Van Thien Nguyen ;
Zeng, Shengda .
JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (03) :783-805
[9]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[10]  
Denkowski Z., 2003, An Introduction to Nonlinear Analysis: Applications