Modularity of minor-free graphs

被引:3
作者
Lason, Michal [1 ]
Sulkowska, Malgorzata [2 ,3 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Univ Cote Azur, I3S, CNRS, INRIA, Nice, France
[3] Wroclaw Univ Sci & Technol, Dept Fundamentals Comp Sci, Wroclaw, Poland
关键词
Cheeger's inequality; edge separator; minor-free graph; modularity; sparse graph; SEPARATOR THEOREM; EDGE SEPARATORS; PLANAR;
D O I
10.1002/jgt.22896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a class of graphs with excluded minor and with the maximum degree of smaller order than the number of edges is maximally modular, that is, for every epsilon > 0 $\varepsilon \gt 0$, the modularity of any graph in the class with sufficiently many edges is at least 1 - epsilon $1-\varepsilon $.
引用
收藏
页码:728 / 736
页数:9
相关论文
共 24 条
[1]  
ALON N, 1990, PROCEEDINGS OF THE TWENTY SECOND ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, P293, DOI 10.1145/100216.100254
[2]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[3]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[4]   Communities and bottlenecks: Trees and treelike networks have high modularity [J].
Bagrow, James P. .
PHYSICAL REVIEW E, 2012, 85 (06)
[5]   Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows [J].
Biswal, Punyashloka ;
Lee, James R. ;
Rao, Satish .
JOURNAL OF THE ACM, 2010, 57 (03)
[6]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[7]  
Cheeger J., 1970, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), P195
[8]   The modularity of random graphs on the hyperbolic plane [J].
Chellig, Jordan ;
Fountoulakis, Nikolaos ;
Skerman, Fiona .
JOURNAL OF COMPLEX NETWORKS, 2022, 10 (01)
[9]  
de Montgolfier F, 2011, LECT NOTES COMPUT SC, V7074, P435, DOI 10.1007/978-3-642-25591-5_45
[10]   EDGE SEPARATORS OF PLANAR AND OUTERPLANAR GRAPHS WITH APPLICATIONS [J].
DIKS, K ;
DJIDJEV, HN ;
SYKORA, O ;
VRTO, I .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1993, 14 (02) :258-279