O-operators of ternary Jordan algebras and ternary Jordan Yang-Baxter equations

被引:1
作者
Chtioui, Taoufik [1 ]
Hajjaji, Atef [1 ]
Mabrouk, Sami [2 ]
机构
[1] Univ Sfax, Fac Sci Sfax, BP 1171, Sfax 3038, Tunisia
[2] Univ Gafsa, Fac Sci Gafsa, Gafsa 2112, Tunisia
关键词
Ternary Jordan algebras; ternary Jordan Yang-Baxter equation; O-operator; ternary pre-Jordan algebras; PRODUCTS; TRIPLES; LIE;
D O I
10.1142/S1793557123500262
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the representation of ternary Jordan algebras which allows us to introduce the notion of coherent ternary Jordan algebras. Then the O-operators of ternary Jordan algebras are introduced and the solutions of ternary Jordan Yang-Baxter equation are discussed involving O-operators. Moreover, ternary pre-Jordan algebras are studied as the algebraic structure behind the O-operators. Finally, the relations among ternary Jordan algebras and ternary pre-Jordan algebras are established and illustrated by examples.
引用
收藏
页数:22
相关论文
共 28 条
[1]   The algebraic and geometric classification of nilpotent binary Lie algebras [J].
Abdelwahab, Hani ;
Jesus Calderon, Antonio ;
Kaygorodov, Ivan .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (06) :1113-1129
[2]   Pre-Poisson algebras [J].
Aguiar, M .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) :263-277
[3]   A STRUCTURE THEORY FOR JORDAN ALGEBRAS [J].
ALBERT, AA .
ANNALS OF MATHEMATICS, 1947, 48 (03) :546-567
[4]   Ternary Hom-Jordan algebras induced by Hom-Jordan algebras [J].
Arfa, Anja ;
Ben Hassine, Abdelkader ;
Mabrouk, Sami .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) :3944-3968
[5]   Bialgebras, the classical Yang-Baxter equation and Manin triples for 3-Lie algebras [J].
Bai, Chengming ;
Guo, Li ;
Sheng, Yunhe .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 23 (01) :27-74
[6]  
Baxter G., 1960, Pacific J. Math, V10, P731, DOI [10.2140/pjm.1960.10.731, DOI 10.2140/PJM.1960.10.731]
[7]   Nijenhuis operators on 3-Hom-L-dendriform algebras [J].
Ben Hassine, Abdelkader ;
Chtioui, Taoufik ;
Mabrouk, Sami .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (12) :5367-5391
[8]   Identities for generalized Lie and Jordan products on totally associative triple systems [J].
Bremner, M ;
Hentzel, I .
JOURNAL OF ALGEBRA, 2000, 231 (01) :387-405
[9]  
Bremner M, 2001, ALGEBR COLLOQ, V8, P11
[10]  
Burde D., 2006, Cent. Eur. J. Math, V4, P323, DOI [10.2478/s11533-006-0014-9, DOI 10.2478/S11533-006-0014-9]