Von Neumann equivalence and properly proximal groups

被引:1
作者
Ishan, Ishan [1 ]
Peterson, Jesse [2 ]
Ruth, Lauren [3 ]
机构
[1] Univ Nebraska Lincoln, Dept Math, 203 Avery Hall, POB 880130, Lincoln, NE 68588 USA
[2] Vanderbilt Univ, Dept Math, Stevenson Ctr 1326, Nashville, TN 37240 USA
[3] Mercy Coll, Dept Math, 555 Broadway, Dobbs Ferry, NY 10522 USA
关键词
Von Neumann algebras; Proper proximality; Von Neumann equivalence; Measure equivalence; W-RIGID GROUPS; MALLEABLE ACTIONS; ORBIT EQUIVALENCE; TENSOR-PRODUCTS; II1; FACTORS; SUPERRIGIDITY; OPERATORS; MODULES; RINGS;
D O I
10.1016/j.aim.2023.109481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new equivalence relation on groups, which we call von Neumann equivalence, that is coarser than both measure equivalence and W*-equivalence. We introduce a general procedure for inducing actions in this setting and use this to show that many analytic properties, such as amenability, property (T), and the Haagerup property, are preserved under von Neumann equivalence. We also show that proper proximality, which was defined recently in [9] using dynamics, is also preserved under von Neumann equivalence. In particular, proper proximality is preserved under both measure equivalence and W*-equivalence, and from this we obtain examples of non-inner amenable groups that are not properly proximal. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:43
相关论文
共 69 条
[1]   VON NEUMANN EQUIVALENCE AND Md TYPE APPROXIMATION PROPERTIES [J].
Battseren, Bat-Od .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (10) :4447-4459
[2]   Von Neumann equivalence and group exactness [J].
Battseren, Bat-Od .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (04)
[3]   KAZHDAN PROPERTY (T) AND AMENABLE REPRESENTATIONS [J].
BEKKA, MEB ;
VALETTE, A .
MATHEMATISCHE ZEITSCHRIFT, 1993, 212 (02) :293-299
[4]   W*-superrigidity for wreath products with groups having positive first l2-Betti number [J].
Berbec, Mihaita .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (01)
[5]   W*-superrigidity for group von Neumann algebras of left-right wreath products [J].
Berbec, Mihaita ;
Vaes, Stefaan .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 :1116-1152
[6]  
Blecher D., 2004, London Mathematical Society Monographs. New Series, px+387
[7]   TENSOR-PRODUCTS OF OPERATOR-SPACES [J].
BLECHER, DP ;
PAULSEN, VI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :262-292
[8]   TENSOR-PRODUCTS OF OPERATOR-SPACES .2. [J].
BLECHER, DP .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (01) :75-90
[9]   PROPERLY PROXIMAL GROUPS AND THEIR VON NEUMANN ALGEBRAS [J].
Boutonnet, Remi ;
Ioana, Adrian ;
Peterson, Jesse .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2021, 54 (02) :445-482
[10]   Amalgamated free product rigidity for group von Neumann algebras [J].
Chifan, Ionut ;
Ioana, Adrian .
ADVANCES IN MATHEMATICS, 2018, 329 :819-850