A nomogram model combining ultrasound-based radiomics features and clinicopathological factors to identify germline BRCA1/2 mutation in invasive breast cancer patients

被引:2
作者
Guo, Ruohan [1 ]
Yu, Yiwen [1 ]
Huang, Yini [1 ]
Lin, Min [1 ]
Liao, Ying [1 ]
Hu, Yixin [1 ]
Li, Qing [1 ]
Peng, Chuan [1 ]
Zhou, Jianhua [1 ]
机构
[1] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Ultrasound, Canc Ctr,State Key Lab Oncol South China, 651 Dongfeng Rd East, Guangzhou 510060, Peoples R China
关键词
BRCA mutation; Invasive breast cancer; Ultrasound; Radiomics; Nomogram; IMAGING FEATURES; CARCINOMA; ESTROGEN; CRITERIA; GENES; WOMEN; RISK;
D O I
10.1016/j.heliyon.2023.e23383
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: BRCA1/2 status is a key to personalized therapy for invasive breast cancer patients. This study aimed to explore the association between ultrasound radiomics features and germline BRCA1/2 mutation in patients with invasive breast cancer.Materials and methods: In this retrospective study, 100 lesions in 92 BRCA1/2-mutated patients and 390 lesions in 357 non-BRCA1/2-mutated patients were included and randomly assigned as training and validation datasets in a ratio of 7:3. Gray-scale ultrasound images of the largest plane of the lesions were used for feature extraction. Maximum relevance minimum redundancy (mRMR) algorithm and multivariate logistic least absolute shrinkage and selection operator (LASSO) regression were used to select features. The multivariate logistic regression method was used to construct predictive models based on clinicopathological factors, radiomics features, or a combination of them.Results: In the clinical model, age at first diagnosis, family history of BRCA1/2-related malignancies, HER2 status, and Ki-67 level were found to be independent predictors for BRCA1/2 mutation. In the radiomics model, 10 significant features were selected from the 1032 radiomics features extracted from US images. The AUCs of the radiomics model were not inferior to those of the clinical model in both training dataset [0.712 (95% CI, 0.647-0.776) vs 0.768 (95% CI, 0.704-0.835); p = 0.429] and validation dataset [0.705 (95% CI, 0.597-0.808) vs 0.723 (95% CI, 0.625-0.828); p = 0.820]. The AUCs of the nomogram model combining clinical and radiomics features were 0.804 (95% CI, 0.748-0.861) in the training dataset and 0.811 (95% CI, 0.724-0.894) in the validation dataset, which were proved significantly higher than those of the clinical model alone by DeLong's test (p = 0.041; p = 0.007). To be noted, the negative predictive values (NPVs) of the nomogram model reached a favorable 0.93 in both datasets.Conclusion: This machine nomogram model combining ultrasound-based radiomics and clinical features exhibited a promising performance in identifying germline BRCA1/2 mutation in patients with invasive breast cancer and may help avoid unnecessary gene tests in clinical practice.
引用
收藏
页数:12
相关论文
共 46 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update [J].
Allison, Kimberly H. ;
Hammond, M. Elizabeth H. ;
Dowsett, Mitchell ;
McKernin, Shannon E. ;
Carey, Lisa A. ;
Fitzgibbons, Patrick L. ;
Hayes, Daniel F. ;
Lakhani, Sunil R. ;
Chavez-MacGregor, Mariana ;
Perlmutter, Jane ;
Perou, Charles M. ;
Regan, Meredith M. ;
Rimm, David L. ;
Symmans, W. Fraser ;
Torlakovic, Emina E. ;
Varella, Leticia ;
Viale, Giuseppe ;
Weisberg, Tracey F. ;
McShane, Lisa M. ;
Wolff, Antonio C. .
JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (12) :1346-+
[3]  
[Anonymous], 2023, NCCN clinical practice guidelines in oncology (NCCN Guidelines) pancreatic adenocarcinoma
[4]   Interpretation of radiomics features-A pictorial review [J].
Ardakani, Ali Abbasian ;
Bureau, Nathalie J. ;
Ciaccio, Edward J. ;
Acharya, U. Rajendra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 215
[5]   A systematic review of the international prevalence of BRCA mutation in breast cancer [J].
Armstrong, Nigel ;
Ryder, Steve ;
Forbes, Carol ;
Ross, Janine ;
Quek, Ruben G. W. .
CLINICAL EPIDEMIOLOGY, 2019, 11 :543-561
[6]   Underdiagnosis of Hereditary Breast Cancer: Are Genetic Testing Guidelines a Tool or an Obstacle? [J].
Beitsch, Peter D. ;
Whitworth, Pat W. ;
Hughes, Kevin ;
Patel, Rakesh ;
Rosen, Barry ;
Compagnoni, Gia ;
Baron, Paul ;
Simmons, Rache ;
Smith, Linda Ann ;
Grady, Ian ;
Kinney, Michael ;
Coomer, Cynara ;
Barbosa, Karen ;
Holmes, Dennis R. ;
Brown, Eric ;
Gold, Linsey ;
Clark, Patricia ;
Riley, Lee ;
Lyons, Samuel ;
Ruiz, Antonio ;
Kahn, Sadia ;
MacDonald, Heather ;
Curcio, Lisa ;
Hardwick, Mary Kay ;
Yang, Shan ;
Esplin, Ed D. ;
Nussbaum, Robert L. .
JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (06) :453-+
[7]   Evaluating the NCCN Clinical Criteria for Recommending BRCA1 and BRCA2 Genetic Testing in Patients With Breast Cancer [J].
Cropper, Caiqian ;
Woodson, Ashley ;
Arun, Banu ;
Barcenas, Carlos ;
Litton, Jennifer ;
Noblin, Sarah ;
Liu, Diane ;
Park, Minjeong ;
Daniels, Molly .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2017, 15 (06) :797-803
[8]   Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021 [J].
Daly, Mary B. ;
Pal, Tuya ;
Berry, Michael P. ;
Buys, Saundra S. ;
Dickson, Patricia ;
Domchek, Susan M. ;
Elkhanany, Ahmed ;
Friedman, Susan ;
Goggins, Michael ;
Hutton, Mollie L. ;
Karlan, Beth Y. ;
Khan, Seema ;
Klein, Catherine ;
Kohlmann, Wendy ;
Kurian, Allison W. ;
Laronga, Christine ;
Litton, Jennifer K. ;
Mak, Julie S. ;
Menendez, Carolyn S. ;
Merajver, Sofia D. ;
Norquist, Barbara S. ;
Offit, Kenneth ;
Pederson, Holly J. ;
Reiser, Gwen ;
Senter-Jamieson, Leigha ;
Shannon, Kristen Mahoney ;
Shatsky, Rebecca ;
Visvanathan, Kala ;
Weitzel, Jeffrey N. ;
Wick, Myra J. ;
Wisinski, Kari B. ;
Yurgelun, Matthew B. ;
Darlow, Susan D. ;
Dwyer, Mary A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (01) :77-102
[9]   Revisiting the definition of estrogen receptor positivity in HER2-negative primary breast cancer [J].
Fujii, T. ;
Kogawa, T. ;
Dong, W. ;
Sahin, A. A. ;
Moulder, S. ;
Litton, J. K. ;
Tripathy, D. ;
Iwamoto, T. ;
Hunt, K. K. ;
Pusztai, L. ;
Lim, B. ;
Shen, Y. ;
Ueno, N. T. .
ANNALS OF ONCOLOGY, 2017, 28 (10) :2420-2428
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577