Automorphisms of the universal enveloping algebra of a finite-dimensional Zinbiel algebra with zero multiplication

被引:0
作者
Zhangazinova, D. M. [1 ]
Naurazbekova, A. S. [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Astana, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2023年 / 112卷 / 04期
关键词
Zinbiel (dual Leibniz) algebra; universal (multiplicative) enveloping algebra; basis; automorphism; affine automorphism;
D O I
10.31489/2023M4/173-184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years there has been a great interest in the study of Zinbiel (dual Leibniz) algebras. Let A be Zinbiel algebra over an arbitrary field K and let e1, e2, ... , em, ... be a linear basis of A. In 2010 A. Naurazbekova, using the methods of Gro center dot bner-Shirshov bases, constructed the basis of the universal (multiplicative) enveloping algebra U(A) of A. Using this result, the automorphisms of the universal enveloping algebra of a finite-dimensional Zinbiel algebra with zero multiplication are described.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 28 条
[1]  
Adashev J.Q., 2007, 3 INT C RES ED MATH, P45
[2]   Pre-Poisson algebras [J].
Aguiar, M .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) :263-277
[3]   Pre-Gerstenhaber Algebra to nearest homotopy [J].
Aloulou, Walid ;
Arnal, Didier ;
Chatbouri, Ridha .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (11) :2666-2688
[4]   The algebraic and geometric classification of Zinbiel algebras [J].
Alvarez, Maria Alejandra ;
Fehlberg, Renato ;
Kaygorodov, Ivan .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (11)
[5]   DIAMOND LEMMA FOR RING THEORY [J].
BERGMAN, GM .
ADVANCES IN MATHEMATICS, 1978, 29 (02) :178-218
[6]  
Boei A., 1976, Ae6pa i oika, P117
[7]   p-Filiform Zinbiel algebras [J].
Camacho, L. M. ;
Canete, E. M. ;
Gomez-Vidal, S. ;
Omiro, B. A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) :2958-2972
[8]   Central extensions of filiform Zinbiel algebras [J].
Camacho, Luisa M. ;
Karimjanov, Iqboljon ;
Kaygorodov, Ivan ;
Khudoyberdiyev, Abror .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08) :1479-1495
[9]  
Chapoton F, 2021, arXiv
[10]   Bialgebraic approach to rack cohomology [J].
Covez, Simon ;
Farinati, Marco Andres ;
Lebed, Victoria ;
Manchon, Dominique .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (04) :1551-1582