Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor

被引:1
|
作者
Ma, Haikuan [1 ,2 ,3 ,4 ,5 ]
Zhang, Shuwei [2 ,3 ,4 ]
Yuan, Guang [1 ]
Liu, Yan [2 ,3 ,4 ]
Cao, Xuan [2 ,3 ,4 ]
Kong, Xiangfeng [2 ,3 ,4 ]
Wang, Yang [2 ,3 ,4 ]
机构
[1] Ocean Univ China, Coll Informat Sci & Engn, Qingdao, Peoples R China
[2] Qilu Univ Technol, Inst Oceanog Instrumentat, Shandong Acad Sci, Qingdao, Peoples R China
[3] Shandong Prov Key Lab Marine Monitoring Instrument, Qingdao, Peoples R China
[4] Natl Engn & Technol Res Ctr Marine Monitoring Equi, Qingdao, Peoples R China
[5] Ocean Univ China, Coll Informat Sci & Engn, 238 Songling Rd, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Automated loop flow-reactor technology; surface-enhanced Raman spectroscopy; SERS; gold nanoparticles; rhodamine; 6G; SCATTERING SERS; SUBSTRATE; SPECTRA; ARRAY; SIZE;
D O I
10.1177/00037028231196907
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This study used automatic control methods to prepare gold nanoparticles (AuNPs) as the substrate and rhodamine 6G molecule as the probe to investigate the enhancement effect, stability, and consistency of surface-enhanced Raman spectroscopy (SERS). The gold nanosols were prepared via automatic control using loop flow-reactor technology, and the synthesis of nanoparticles with different sizes was precisely controlled by optimizing the ratio of the solution required for the reaction between sodium citrate and chloroauric acid during the preparation process. The morphology, structure, and optical properties of the prepared AuNPs were investigated using field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet visible spectroscopy. Using the proposed method, AuNPs with average particle sizes of 72, 85, 93, and 103 nm were synthesized in a precisely controlled manner. The 93 nm particles exhibited good SERS activity for rhodamine 6G under 785 nm excitation with a detection limit of 2.5 x 10(-10) M. The relative standard deviation of the SERS spectra synthesized multiple times was <3.5%, indicating their good sensitivity and reproducibility. The results showed that the AuNPs prepared by the automatic control of the loop-flow method have high sensitivity, stability, and reproducibility. Moreover, they exhibited notable potential for in situ measurement and quantitative analysis using SERS.
引用
收藏
页码:1163 / 1172
页数:10
相关论文
共 50 条
  • [1] Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Matsukovich, A. S.
    Shabunya-Klyachkovskaya, E., V
    Sawczak, M.
    Grochowska, K.
    Maskowicz, D.
    Sliwinski, G.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (3-4)
  • [2] Surface-Enhanced Raman Spectroscopy (SERS) Cellular Imaging of Intracellulary Biosynthesized Gold Nanoparticles
    Lahr, Rebecca Halvorson
    Vikesland, Peter J.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (07): : 1599 - 1608
  • [3] Cell Surface Protein Detection using Surface-Enhanced Raman Scattering (SERS) Gold Nanoparticles
    MacLaughlin, Christina M.
    Ip, Shell
    Mullaithilaga, Nisa
    Parker, Edward
    Wang, Chen
    Walker, Gilbert C.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 589A - 589A
  • [4] Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS)
    Guo, Huiyuan
    Zhang, Zhiyun
    Xing, Baoshan
    Mukherjee, Arnab
    Musante, Craig
    White, Jason C.
    He, Lili
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (07) : 4317 - 4324
  • [5] Quantitative Analysis Using Surface-Enhanced Raman Spectroscopy (SERS)
    Delonas, Cindy
    Goodacre, Roy
    SPECTROSCOPY, 2021, 36 : 30 - 33
  • [6] Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles
    Kneipp, K
    Haka, AS
    Kneipp, H
    Badizadegan, K
    Yoshizawa, N
    Boone, C
    Shafer-Peltier, KE
    Motz, JT
    Dasari, RR
    Feld, MS
    APPLIED SPECTROSCOPY, 2002, 56 (02) : 150 - 154
  • [7] Surface-enhanced Raman spectroscopy using uncoated gold nanoparticles for bacteria discrimination
    Akanny, Elie
    Bonhomme, Anne
    Commun, Carine
    Doleans-Jordheim, Anne
    Farre, Carole
    Bessueille, Francois
    Bourgeois, Sandrine
    Bordes, Claire
    JOURNAL OF RAMAN SPECTROSCOPY, 2020, 51 (04) : 619 - 629
  • [8] Analysis of a Mixture Solution Using Silver Nanoparticles Based on Surface-Enhanced Raman Spectroscopy (SERS)
    Bao, Lip
    Han, Siqingaowa
    Hasi, Wuliji
    SPECTROSCOPY, 2021, 36 (03) : 28 - 33
  • [9] Analysis of a mixture solution using silver nanoparticles based on surface-enhanced raman spectroscopy (SERS)
    National Laboratory of Science and Technology, Harbin Institute of Technology, Harbin, China
    不详
    不详
    Hasi, Wuliji (hasiwuliji19@163.com), 1600, Advanstar Communications Inc. (36): : 28 - 33
  • [10] TNF-α detection using gold nanoparticles as a surface-enhanced Raman spectroscopy substrate
    Loredo-Garcia, Elizabeth
    Ortiz-Dosal, Alejandra
    Manuel Nunez-Leyva, Juan
    Cuellar Camacho, Jose Luis
    Alejandro Alegria-Torres, Jorge
    Garcia-Torres, Lizeth
    Ricardo Navarro-Contreras, Hugo
    Samuel Kolosovas-Machuca, Eleazar
    NANOMEDICINE, 2020, 16 (01) : 51 - 61