THE NONCONFORMING CROUZEIX-RAVIART ELEMENT APPROXIMATION AND TWO-GRID DISCRETIZATIONS FOR THE ELASTIC EIGENVALUE PROBLEM*

被引:2
作者
Bi, Hai [1 ]
Zhang, Xuqing [1 ,2 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Guizhou Med Univ, Sch Biol & Engn, Guiyang 550025, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 06期
基金
中国国家自然科学基金;
关键词
Elastic eigenvalue problem; Nonconforming Crouzeix-Raviart element; Two-; grid discretizations; Error estimates; Locking-free; FINITE-ELEMENT; ERROR ANALYSIS; A-PRIORI; EQUATIONS; LOCKING; SCHEME; MODEL;
D O I
10.4208/jcm.2201-m2020-0128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the work of Brenner and Sung [Math. Comp. 59, 321-338 (1992)] and present a regularity estimate for the elastic equations in concave domains. Based on the regularity estimate we prove that the constants in the error estimates of the nonconforming Crouzeix-Raviart element approximations for the elastic equations/eigenvalue problem are independent of Lame ' constant, which means the nonconforming Crouzeix-Raviart element approximations are locking-free. We also establish two kinds of two-grid discretization schemes for the elastic eigenvalue problem, and analyze that when the mesh sizes of coarse grid and fine grid satisfy some relationship, the resulting solutions can achieve the optimal accuracy. Numerical examples are provided to show the efficiency of two-grid schemes for the elastic eigenvalue problem.
引用
收藏
页码:1041 / 1063
页数:23
相关论文
共 54 条
  • [1] [Anonymous], 1992, Singularities in boundary value problems. Recherches en mathematiques appliquees
  • [2] [Anonymous], 2007, The Mathematical Theory of Finite Element Methods
  • [3] Arnold D.N., 1984, JAPAN J APPL MATH, V1, P347
  • [4] Arnold D.N., 1989, ANN SCUOLA NORM-SCI, V15, P169
  • [5] ON LOCKING AND ROBUSTNESS IN THE FINITE-ELEMENT METHOD
    BABUSKA, I
    SURI, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (05) : 1261 - 1293
  • [6] LOCKING EFFECTS IN THE FINITE-ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS
    BABUSKA, I
    SURI, M
    [J]. NUMERISCHE MATHEMATIK, 1992, 62 (04) : 439 - 463
  • [7] Babuska I., 1991, HDB NUMERICAL ANAL, V2, P640
  • [8] Bernardi C, 2002, MATH COMPUT, V71, P1371, DOI 10.1090/S0025-5718-01-01401-6
  • [9] A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem
    Bi, Hai
    Yang, Yidu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9669 - 9678
  • [10] Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012