Deconvolution approach for floating wind turbines

被引:34
|
作者
Liu, Zirui [1 ]
Gaidai, Oleg [1 ]
Sun, Jiayao [2 ]
Xing, Yihan [3 ]
机构
[1] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Zhenjiang, Peoples R China
[3] Univ Stavanger, Dept Mech & Struct Engn & Mat Sci, Stavanger, Norway
关键词
environmental loads; floating offshore wind turbine; green energy; renewable energy; wind energy; RELIABILITY-ANALYSIS; OFFSHORE;
D O I
10.1002/ese3.1485
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Green renewable energy is produced by floating offshore wind turbines (FOWT), a crucial component of the modern offshore wind energy industry. It is a safety concern to accurately evaluate excessive weights while the FOWT operates in adverse weather conditions. Under certain water conditions, dangerous structural bending moments may result in operational concerns. Using commercial FAST software, the study's hydrodynamic ambient wave loads were calculated and converted into FOWT structural loads. This article suggests a Monte Carlo-based engineering technique that, depending on simulations or observations, is computationally effective for predicting extreme statistics of either the load or the response process. The innovative deconvolution technique has been thoroughly explained. The suggested approach effectively uses the entire set of data to produce a clear but accurate estimate for severe response values and fatigue life. In this study, estimated extreme values obtained using a novel deconvolution approach were compared to identical values produced using the modified Weibull technique. It is expected that the enhanced new de-convolution methodology may offer a dependable and correct forecast of severe structural loads based on the overall performance of the advised de-convolution approach due to environmental wave loading.
引用
收藏
页码:2742 / 2750
页数:9
相关论文
共 50 条
  • [41] METHODOLOGY FOR WIND/WAVE BASIN TESTING OF FLOATING OFFSHORE WIND TURBINES
    Martin, Heather R.
    Kimball, Richard W.
    Viselli, Anthony M.
    Goupee, Andrew J.
    PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARTIC ENGINEERING, VOL 7, 2013, : 445 - 454
  • [42] Wind spectral characteristics on strength design of floating offshore wind turbines
    Udoh, Ikpoto E.
    Zou, Jun
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2018, 8 (03): : 281 - 312
  • [43] Characterization of the unsteady aerodynamics of offshore floating wind turbines
    Sebastian, T.
    Lackner, M. A.
    WIND ENERGY, 2013, 16 (03) : 339 - 352
  • [44] Identification of Vibration Modes in Floating Offshore Wind Turbines
    Serrano-Antonanazas, Mikel
    Sierra-Garcia, Jesus-Enrique
    Santos, Matilde
    Tomas-Rodriguez, Maria
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [45] Nonlinear hydrodynamics of floating offshore wind turbines: A review
    Zeng, Xinmeng
    Shao, Yanlin
    Feng, Xingya
    Xu, Kun
    Jin, Ruijia
    Li, Huajun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 191
  • [46] Study on Gyroscopic Effect of Floating Offshore Wind Turbines
    Jia-hao Chen
    Ai-guo Pei
    Peng Chen
    Zhi-qiang Hu
    China Ocean Engineering, 2021, 35 : 201 - 214
  • [47] Floating wind turbines: marine operations challenges and opportunities
    Chitteth Ramachandran, Rahul
    Desmond, Cian
    Judge, Frances
    Serraris, Jorrit-Jan
    Murphy, Jimmy
    WIND ENERGY SCIENCE, 2022, 7 (02) : 903 - 924
  • [48] Study on Gyroscopic Effect of Floating Offshore Wind Turbines
    Chen Jia-hao
    Pei Ai-guo
    Chen Peng
    Hu Zhi-qiang
    CHINA OCEAN ENGINEERING, 2021, 35 (02) : 201 - 214
  • [49] OFFSHORE FLOATING WIND TURBINES ARE ASKING FOR NDE 4.0
    Singh, Ripi
    MATERIALS EVALUATION, 2023, 81 (09) : 14 - 16
  • [50] Dynamically installed anchors for floating offshore wind turbines
    Lieng, Jon Tore
    Sturm, Hendrik
    Hassel, Karl Kristian
    OCEAN ENGINEERING, 2022, 266