Strengthening and toughening of Cu matrix composites reinforced by metallic glass particles with variable size

被引:23
作者
Bao, Weizong [1 ]
Yang, Xinxin [1 ]
Chen, Jie [1 ]
Xiang, Tao [1 ]
Zhou, Toujun [1 ]
Xie, Guoqiang [1 ,2 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Strengthening; Toughening; Metallic glass reinforcements; Crack extension; THERMAL-CONDUCTIVITY; PLASTICITY; BEHAVIOR; DIFFRACTION; FABRICATION; MECHANISMS; MODEL;
D O I
10.1016/j.ijplas.2023.103530
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Metallic glass particle reinforced CuCrZr composites with excellent mechanical and electrical properties are manufactured by ball milling and spark plasma sintering. The effect of reinforce-ment size on the microstructure and properties of composites is investigated. As the size of metallic glass particles decreases, the strength and toughness of the composites are jointly increased. Quantitative results of the strengthening mechanism show that the strength is mainly provided by grain boundaries and metallic glass particles, with the fine and dispersed metallic glass reinforcements contributing more to the strength. Furthermore, crack extension behavior under uniaxial compression is observed for composite sections. The results indicate that cracks sprout and expand along the interface, and the interface bonding modified by the ball milling (BM) process can effectively inhibit the crack merging process. In particular, the crack extension rate corresponds to the plasticity of the particle-reinforced composite as determined by the interfacial properties, particle size and distribution of the reinforcement.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Interactions between basal dislocations and β1' precipitates in Mg-4Zn alloy: Mechanisms and strengthening [J].
Alizadeh, R. ;
LLorca, J. .
ACTA MATERIALIA, 2020, 186 :475-486
[2]   Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite [J].
Asgharzadeh, Hamed ;
Eslami, Samira .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 806 :553-565
[3]   Improved strength and conductivity of metallic-glass-reinforced nanocrystalline CuCrZr alloy [J].
Bao, Weizong ;
Chen, Jie ;
Yang, Xinxin ;
Xiang, Tao ;
Cai, Zeyun ;
Xie, Guoqiang .
MATERIALS & DESIGN, 2022, 214
[4]   High strength conductive bulk Cu-based alloy/metallic glass composites fabricated by spark plasma sintering [J].
Bao, Weizong ;
Yan, Han ;
Chen, Jie ;
Xie, Guoqiang .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 825
[5]   Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond [J].
Chang, Guo ;
Sun, Fangyuan ;
Duan, Jialiang ;
Che, Zifan ;
Wang, Xitao ;
Wang, Jinguo ;
Kim, Moon J. ;
Zhang, Hailong .
ACTA MATERIALIA, 2018, 160 :235-246
[6]   Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites [J].
Chen, S. ;
Li, W. Q. ;
Zhang, L. ;
Fu, H. M. ;
Li, Z. K. ;
Zhu, Z. W. ;
Li, H. ;
Zhang, H. W. ;
Wang, A. M. ;
Wang, Y. D. ;
Zhang, H. F. .
COMPOSITES PART B-ENGINEERING, 2020, 199
[7]   The effect of ball milling on the microstructure of powder metallurgy aluminium matrix composites reinforced with MoSi2 intermetallic particles [J].
Corrochano, J. ;
Lieblich, M. ;
Ibanez, J. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2011, 42 (09) :1093-1099
[8]   Fatigue crack growth behavior of amorphous particulate reinforced composites [J].
Dastgerdi, J. Nafar ;
Marquis, G. ;
Sankaranarayanan, S. ;
Gupta, M. .
COMPOSITE STRUCTURES, 2016, 153 :782-790
[9]   Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles [J].
Ding, Huaping ;
Bao, Xiaoqian ;
Jamili-Shirvan, Zahra ;
Jin, Junsong ;
Deng, Lei ;
Yao, Kefu ;
Gong, Pan ;
Wang, Xinyun .
MATERIALS & DESIGN, 2021, 210
[10]   Compressive and wear resistance of nanometric alumina reinforced copper matrix composites [J].
Fathy, A. ;
Shehata, F. ;
Abdelhameed, M. ;
Elmahdy, M. .
MATERIALS & DESIGN, 2012, 36 :100-107