Magnetic supersolid phases of two-dimensional extended Bose-Hubbard model with spin-orbit coupling

被引:0
|
作者
Pu, Dong-Dong [1 ]
Wang, Ji-Guo [1 ]
Song, Ya-Fei [2 ]
Bai, Xiao-Dong [3 ]
机构
[1] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi 435002, Peoples R China
[2] Shijiazhuang TieDao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
[3] Hebei Normal Univ, Coll Phys, Shijiazhuang 050016, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 04期
关键词
Bose-Hubbard model; quantum phase transitions; spin-orbit coupling; SUPERFLUID; INSULATOR; MIXTURES; EQUATION; DIAGRAM; ATOMS;
D O I
10.1088/1367-2630/ad388e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum phases and phase transitions for spin-orbit coupled two-species bosons with nearest-neighbor (NN) interaction in a two-dimensional square lattice using inhomogeneous dynamical Guztwiller mean-field method. Under the effect of spin-orbit coupling and NN interaction, we uncover a rich variety of different magnetic supersolid (SS) phases. In the presence of intraspecies NN interaction, the phase diagram exhibits the phase-twisted double-checkerboard SS (PT-DCSS) and phase-striped double-checkerboard SS (PS-DCSS) phases. For both intra- and interspecies NN interactions, apart from the phase-twisted lattice SS (PT-LSS) and phase-striped lattice SS (PS-LSS) phases, some nontrivial SS phases with interesting properties occur. More importantly, we find that the emergences of these nontrivial SS phases are dependent of the interspecies on-site interaction. To further characterize the SS phases, we also discuss the spin-dependent momentum distributions and magnetic textures. The magnetic textures, such as antiferromagnetic, spiral and stripe orders are shown. Finally, we give the fully analytical insights into the numerical results.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Extended Bose-Hubbard model for two-leg ladder systems in artificial magnetic fields
    Sachdeva, Rashi
    Singh, Manpreet
    Busch, Thomas
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [22] Statistical properties of the two-dimensional Dirac oscillator with spin-orbit coupling
    Chargui, Yassine
    Dhahbi, Anis
    ANNALS OF PHYSICS, 2020, 423
  • [23] Strong-coupling expansion for the spin-1 Bose-Hubbard model
    Kimura, Takashi
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [24] Phase diagram, band structure and density of states in two-dimensional attractive Fermi-Hubbard model with Rashba spin-orbit coupling
    Han, Rui
    Yuan, Feng
    Zhao, Huaisong
    NEW JOURNAL OF PHYSICS, 2023, 25 (02):
  • [25] Successive phase transitions at finite temperatures toward the supersolid state in a three-dimensional extended Bose-Hubbard model
    Yamamoto, Keisuke
    Todo, Synge
    Miyashita, Seiji
    PHYSICAL REVIEW B, 2009, 79 (09)
  • [26] Strong-coupling perturbation theory for the extended Bose-Hubbard model
    Iskin, M.
    Freericks, J. K.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [27] Stripe and supersolid phases of spin-orbit coupled spin-2 Bose-Einstein condensates in an optical lattice
    Wang, Ji-Guo
    Yang, Shi-Jie
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (03)
  • [28] Thermodynamic properties of two-dimensional semiconductors with spin-orbit coupling
    Gao, F.
    Beaven, D. J. D.
    Fulcher, J.
    Yang, C. H.
    Zeng, Z.
    Xu, W.
    Zhang, C.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05) : 1454 - 1456
  • [29] Strong-coupling phases of the spin-orbit-coupled spin-1 Bose-Hubbard chain: Odd-integer Mott lobes and helical magnetic phases
    Pixley, J. H.
    Cole, William S.
    Spielman, I. B.
    Rizzi, Matteo
    Das Sarma, S.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [30] Ultrathin two-dimensional superconductivity with strong spin-orbit coupling
    Nam, Hyoungdo
    Chen, Hua
    Liu, Tijiang
    Kim, Jisun
    Zhang, Chendong
    Yong, Jie
    Lemberger, Thomas R.
    Kratz, Philip A.
    Kirtley, John R.
    Moler, Kathryn
    Adams, Philip W.
    MacDonald, Allan H.
    Shih, Chih-Kang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (38) : 10513 - 10517