Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests

被引:3
作者
Yu, Yue [1 ]
Yu, Haiye [1 ]
Li, Xiaokai [1 ]
Zhang, Lei [1 ]
Sui, Yuanyuan [1 ]
机构
[1] Jilin Univ, Sch Biol & Agr Engn, Changchun 130022, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
random forests; feature selection; transformed spectra; vegetation index; potassium content; rice; NITROGEN; REFLECTANCE; PHOSPHORUS; WHEAT; WATER; NUTRITION; PASTURE; INDEXES; QUALITY; MAIZE;
D O I
10.3390/agronomy13092337
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The information acquisition about potassium, which affects the quality and yield of crops, is of great significance for crop nutrient management and intelligent decision making in smart agriculture. This article proposes a method for predicting the rice leaf potassium content (LKC) using spectral characteristics and random forests (RF). The method screens spectral characteristic variables based on the linear correlation analysis results of rice LKC and four transformed spectra (original reflectance (R), first derivative reflectance (FDR), continuum-removed reflectance (CRR), and normalized reflectance (NR)) of leaves and the PCA dimensionality reduction results of vegetation indices. Following a second screening of the correlated single band and vegetation index variables of the four transformed spectra, the RF is used to obtain the mixed variable (MV), and regression models are developed to achieve an accurate prediction of rice LKC. Additionally, the effect of potassium spectral sensitivity bands, indices, spectral transformation form, and different modeling methods on rice LKC prediction accuracy is assessed. The results showed that the mixed variable obtained with the second screening using the random forest feature selection method could effectively improve the prediction accuracy of rice LKC. The regression models based on the single band variables (BV) and the vegetation index variables (IV), FDR-RF and IV-RF, with R-2 values of 0.62301 and 0.7387 and RMSE values of 0.24174 and 0.15045, respectively, are the best models. In comparison to the previous two models, the MV-RF validation had a higher R-2 and a lower RMSE, reaching 0.77817 and 0.14913, respectively. It can be seen that the RF has a better processing ability for the MV that contains vegetation indices and IV than for the BV. Furthermore, the results of different variable screening and regression analyses also revealed that the single band's range of 1402-1428 nm and 1871-1907 nm, as well as the vegetation indices constituted of reflectance 1799-1881 nm and 2276-2350 nm, are of great significance for predicting rice LKC. This conclusion can provide a reference for establishing a universal vegetation index related to potassium.
引用
收藏
页数:19
相关论文
共 65 条
[1]   Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture [J].
Albayrak, Sebahattin .
SENSORS, 2008, 8 (11) :7275-7286
[2]  
ANDRADE ASD, 2021, 101 NC RURAL, V51, P692, DOI DOI 10.1590/0103-8478CR20200692
[3]   New approach for rapid estimation of leaf nitrogen, phosphorus, and potassium contents in apple-trees using Vis/NIR spectroscopy based on wavelength selection coupled with machine learning [J].
Azadnia, Rahim ;
Rajabipour, Ali ;
Jamshidi, Bahareh ;
Omid, Mahmoud .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 207
[4]   Predicting Sea Level Rise Using Artificial Intelligence: A Review [J].
Bahari, Nur Amira Afiza Bt Saiful ;
Ahmed, Ali Najah ;
Chong, Kai Lun ;
Lai, Vivien ;
Huang, Yuk Feng ;
Koo, Chai Hoon ;
Ng, Jing Lin ;
El-Shafie, Ahmed .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (07) :4045-4062
[5]   Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions [J].
Berger, Katja ;
Verrelst, Jochem ;
Feret, Jean-Baptiste ;
Wang, Zhihui ;
Wocher, Matthias ;
Strathmann, Markus ;
Danner, Martin ;
Mauser, Wolfram ;
Hank, Tobias .
REMOTE SENSING OF ENVIRONMENT, 2020, 242
[6]   EFFECT OF POTASSIUM NUTRITION ON TOMATO PLANT-GROWTH AND FRUIT DEVELOPMENT [J].
BESFORD, RT ;
MAW, GA .
PLANT AND SOIL, 1975, 42 (02) :395-412
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Spectral characterization and prediction of nutrient content in winter leaves of litchi during flower bud differentiation in southern China [J].
Chen, Shuisen ;
Li, Dan ;
Wang, Yingfang ;
Peng, Zhiping ;
Chen, Weiqi .
PRECISION AGRICULTURE, 2011, 12 (05) :682-698
[9]   Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC) [J].
Delegido, Jesus ;
Alonso, Luis ;
Gonzalez, Gonzalo ;
Moreno, Jose .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2010, 12 (03) :165-174
[10]   Potassium channels in plant cells [J].
Dreyer, Ingo ;
Uozumi, Nobuyuki .
FEBS JOURNAL, 2011, 278 (22) :4293-4303