Polycaprolactone, polylactic acid, and nanohydroxyapatite scaffolds obtained by electrospinning and 3D printing for tissue engineering

被引:5
|
作者
Rodriguez, Omar Alejandro Gonzalez [1 ]
Guerrero, Nancy Cecilia Ramirez [1 ]
Pimentel, Rocio Guadalupe Casanas [1 ]
Fonseca, Monica Rosalia Jaime [1 ]
Martinez, Eduardo San Martin [1 ,2 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Miguel Hidalgo, Ciudad De Mexico, Mexico
[2] Inst Politecn Nacl, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Legaria 694,Irrigac,Miguel Hidalgo, Ciudad De Mexico, Mexico
关键词
Nanofibers; polymeric scaffolds; electrospun; polylactic acid; polycaprolactone; nanohydroxyapatite; tissue engineering; bone; IN-VITRO; PLA; COMPOSITES; HYDROXYAPATITE; FABRICATION; GROWTH; PCL;
D O I
10.1080/00914037.2023.2277222
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
There is a deficit for bone tissue natural grafts that seek to be covered with synthetic substitutes. Scaffolds generated with 3D printing and electrospinning allow adequate mechanical properties maintaining a structure appropriate for cell growth. Here, a scaffold made up of three-dimensional (3D) printed PLA frameworks added with PCL/PLA/nHA nanofibers was manufactured. The framework showed mechanical properties similar to other reported bone substitutes, while the nanofibers showed diameters between 200 and 850 nm. Scaffolds were suitable for cell adhesion and proliferation when evaluated with fibroblasts, showing cell proliferation into the nanofiber network, a fundamental aspect in tissue engineering. [GRAPHICS]
引用
收藏
页码:1279 / 1290
页数:12
相关论文
共 50 条
  • [1] Influence of size and crystallinity of nanohydroxyapatite (nHA) particles on the properties of Polylactic Acid/nHA nanocomposite scaffolds produced by 3D printing
    Rodovalho, Arthur Joa Reis Lima
    Barbosa, Willams Teles
    Vieira, Jaqueline Leite
    de Oliva, Caio Athayde
    Goncalves, Ana Paula Bispo
    Cardoso, Pollyana da Silva Melo
    Modolon, Henrique Borba
    Montedo, Oscar Rubem Klegues
    Arcaro, Sabrina
    Hodel, Katharine Valeria Saraiva
    Soares, Milena Botelho Pereira
    Ajayan, Pulickel M.
    Barbosa, Josiane Dantas Viana
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 3101 - 3111
  • [2] 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications
    Vyas, Cian
    Zhang, Jun
    Ovrebo, Oystein
    Huang, Boyang
    Roberts, Iwan
    Setty, Mohan
    Allardyce, Benjamin
    Haugen, Havard
    Rajkhowa, Rangam
    Bartolo, Paulo
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
  • [3] A hybrid electrospinning and electrospraying 3D printing for tissue engineered scaffolds
    Wu, Yang
    Fuh, Jerry
    Wong, Yoke San
    Sun, Jie
    RAPID PROTOTYPING JOURNAL, 2017, 23 (06) : 1011 - 1019
  • [4] 3D printed polylactic acid nanocomposite scaffolds for tissue engineering applications
    Alam, Fahad
    Varadarajan, K. M.
    Kumar, S.
    POLYMER TESTING, 2020, 81
  • [5] 3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications
    Parupelli, Santosh Kumar
    Saudi, Sheikh
    Bhattarai, Narayan
    Desai, Salil
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 539 - 551
  • [6] 3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering
    Afghah, Ferdows
    Ullah, Mohib
    Zanjani, Jamal Seyyed Monfared
    Sut, Pinar Akkus
    Sen, Ozlem
    Emanet, Melis
    Okan, Burcu Saner
    Culha, Mustafa
    Menceloglu, Yusuf
    Yildiz, Mehmet
    Koc, Bahattin
    BIOMEDICAL MATERIALS, 2020, 15 (03)
  • [7] Synthesis and characterization of photopolymerizable triblocks for 3D printing tissue engineering scaffolds
    Cheng, Yih-Lin
    Hsu, Yi-Jue
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (03) : 259 - 267
  • [8] Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies
    Yilmaz, Hilal
    Bedir, Tuba
    Gursoy, Sevda
    Kaya, Elif
    Senel, Ilkay
    Tinaz, Gulgun Bosgelmez
    Gunduz, Oguzhan
    Ustundag, Cem Bulent
    BIOMEDICAL MATERIALS, 2024, 19 (04)
  • [9] 3D Printing of Polycaprolactone-Polyaniline Electroactive Scaffolds for Bone Tissue Engineering
    Wibowo, Arie
    Vyas, Cian
    Cooper, Glen
    Qulub, Fitriyatul
    Suratman, Rochim
    Mahyuddin, Andi Isra
    Dirgantara, Tatacipta
    Bartolo, Paulo
    MATERIALS, 2020, 13 (03)
  • [10] 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
    Wang, Pengju
    Sun, Yazhou
    Shi, Xiaoquan
    Shen, Huixing
    Ning, Haohao
    Liu, Haitao
    BIO-DESIGN AND MANUFACTURING, 2021, 4 (02) : 344 - 378