Adrenal Tumor Segmentation on U-Net: A Study About Effect of Different Parameters in Deep Learning

被引:0
|
作者
Solak, Ahmet [1 ]
Ceylan, Rahime [1 ]
Bozkurt, Mustafa Alper [2 ]
Cebeci, Hakan [2 ]
Koplay, Mustafa [2 ]
机构
[1] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkiye
[2] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye
关键词
Adrenal tumor; segmentation; U-Net; parameter analysis; deep learning; SYSTEM;
D O I
10.1142/S2196888823500161
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adrenal lesions refer to abnormalities or growths that occur in the adrenal glands, which are located on top of each kidney. These lesions can be benign or malignant and can affect the function of the adrenal glands. This paper presents a study on adrenal tumor segmentation using a modified U-Net model with various parameter selection strategies. The study investigates the effect of fine-tuning parameters, including k-fold values and batch sizes, on segmentation performance. Additionally, the study evaluates the effectiveness of different preprocessing techniques, such as Discrete Wavelet Transform (DWT), Contrast Limited Adaptive Histogram Equalization (CLAHE), and Image Fusion, in enhancing segmentation accuracy. The results show that the proposed model outperforms the original U-Net model, achieving the highest scores for Dice, Jaccard, sensitivity, and specificity scores of 0.631, 0.533, 0.579, and 0.998, respectively, on the T1-weighted dataset with DWT applied. These results highlight the importance of parameter selection and preprocessing techniques in improving the accuracy of adrenal tumor segmentation using deep learning.
引用
收藏
页码:111 / 135
页数:25
相关论文
共 50 条
  • [21] Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net
    Pan, Zhuokun
    Xu, Jiashu
    Guo, Yubin
    Hu, Yueming
    Wang, Guangxing
    REMOTE SENSING, 2020, 12 (10)
  • [22] Retinal blood vessel segmentation using a deep learning method based on modified U-NET model
    Yadav, Arun Kumar
    Akbar, Mohd
    Kumar, Mohit
    Yadav, Divakar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 82659 - 82678
  • [23] Semantic segmentation and detection of satellite objects using U-Net model of deep learning
    Yadavendra
    Chand, Satish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 44291 - 44310
  • [24] Semantic segmentation and detection of satellite objects using U-Net model of deep learning
    Satish Yadavendra
    Multimedia Tools and Applications, 2022, 81 : 44291 - 44310
  • [25] Effect of learning parameters on the performance of the U-Net architecture for cell nuclei segmentation from microscopic cell images
    Jena, Biswajit
    Digdarshi, Dishant
    Paul, Sudip
    Nayak, Gopal K.
    Saxena, Sanjay
    MICROSCOPY, 2023, 72 (03) : 249 - 264
  • [26] Path aggregation U-Net model for brain tumor segmentation
    Lin, Fengming
    Wu, Qiang
    Liu, Ju
    Wang, Dawei
    Kong, Xiangmao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22951 - 22964
  • [27] Modified U-Net for Automatic Brain Tumor Regions Segmentation
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [28] Inception-UDet: An Improved U-Net Architecture for Brain Tumor Segmentation
    Aboussaleh I.
    Riffi J.
    Mahraz A.M.
    Tairi H.
    Annals of Data Science, 2024, 11 (03) : 831 - 853
  • [29] Path aggregation U-Net model for brain tumor segmentation
    Fengming Lin
    Qiang Wu
    Ju Liu
    Dawei Wang
    Xiangmao Kong
    Multimedia Tools and Applications, 2021, 80 : 22951 - 22964
  • [30] Deep Learning Based Model Observer by U-Net
    Lorente, Iris
    Abbey, Craig
    Brankov, Jovan G.
    MEDICAL IMAGING 2020: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2020, 11316