Adrenal Tumor Segmentation on U-Net: A Study About Effect of Different Parameters in Deep Learning

被引:0
作者
Solak, Ahmet [1 ]
Ceylan, Rahime [1 ]
Bozkurt, Mustafa Alper [2 ]
Cebeci, Hakan [2 ]
Koplay, Mustafa [2 ]
机构
[1] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkiye
[2] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye
关键词
Adrenal tumor; segmentation; U-Net; parameter analysis; deep learning; SYSTEM;
D O I
10.1142/S2196888823500161
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adrenal lesions refer to abnormalities or growths that occur in the adrenal glands, which are located on top of each kidney. These lesions can be benign or malignant and can affect the function of the adrenal glands. This paper presents a study on adrenal tumor segmentation using a modified U-Net model with various parameter selection strategies. The study investigates the effect of fine-tuning parameters, including k-fold values and batch sizes, on segmentation performance. Additionally, the study evaluates the effectiveness of different preprocessing techniques, such as Discrete Wavelet Transform (DWT), Contrast Limited Adaptive Histogram Equalization (CLAHE), and Image Fusion, in enhancing segmentation accuracy. The results show that the proposed model outperforms the original U-Net model, achieving the highest scores for Dice, Jaccard, sensitivity, and specificity scores of 0.631, 0.533, 0.579, and 0.998, respectively, on the T1-weighted dataset with DWT applied. These results highlight the importance of parameter selection and preprocessing techniques in improving the accuracy of adrenal tumor segmentation using deep learning.
引用
收藏
页码:111 / 135
页数:25
相关论文
共 24 条
[1]  
Abraham N, 2019, I S BIOMED IMAGING, P683, DOI 10.1109/ISBI.2019.8759329
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Adrenal tumor segmentation method for MR images [J].
Barstugan, Mucahid ;
Ceylan, Rahime ;
Asoglu, Semih ;
Cebeci, Hakan ;
Koplay, Mustafa .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 164 :87-100
[4]  
Bi L, 2017, I S BIOMED IMAGING, P895, DOI 10.1109/ISBI.2017.7950660
[5]   Automatic Segmentation of Adrenal Tumor in CT Images Based on Sparse Representation [J].
Chai, H. C. ;
Guo, Y. ;
Wang, Y. Y. .
JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (08) :1737-1741
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]  
Cicek O., 2016, INT C MED IM COMP CO, P424
[8]  
Gonzalez R., 2008, Digital Image Processing, V8th ed
[9]  
Hiller-Sturmhöfel S, 1998, ALCOHOL HEALTH RES W, V22, P153
[10]   COMPARING IMAGES USING THE HAUSDORFF DISTANCE [J].
HUTTENLOCHER, DP ;
KLANDERMAN, GA ;
RUCKLIDGE, WJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (09) :850-863