Online Meta-Learning for Hybrid Model-Based Deep Receivers

被引:18
|
作者
Raviv, Tomer [1 ]
Park, Sangwoo [2 ]
Simeone, Osvaldo [2 ]
Eldar, Yonina C. [3 ]
Shlezinger, Nir [1 ]
机构
[1] Ben Gurion Univ Negev, Sch ECE, IL-8410501 Beer Sheva, Israel
[2] Kings Coll London, Dept Engn, London WC2R 2LS, England
[3] Weizmann Inst Sci, Fac Math & CS, IL-7610001 Rehovot, Israel
基金
以色列科学基金会;
关键词
Wireless communications; model-based deep learning; deep receivers; meta-learning; SOFT INTERFERENCE CANCELLATION; COMMUNICATION-SYSTEMS; AUGMENTATION; ALGORITHM; CODES;
D O I
10.1109/TWC.2023.3241841
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent years have witnessed growing interest in the application of deep neural networks (DNNs) for receiver design, which can potentially be applied in complex environments without relying on knowledge of the channel model. However, the dynamic nature of communication channels often leads to rapid distribution shifts, which may require periodically retraining. This paper formulates a data-efficient two-stage training method that facilitates rapid online adaptation. Our training mechanism uses a predictive meta-learning scheme to train rapidly from data corresponding to both current and past channel realizations. Our method is applicable to any deep neural network (DNN)-based receiver, and does not require transmission of new pilot data for training. To illustrate the proposed approach, we study DNN-aided receivers that utilize an interpretable model-based architecture, and introduce a modular training strategy based on predictive meta-learning. We demonstrate our techniques in simulations on a synthetic linear channel, a synthetic non-linear channel, and a COST 2100 channel. Our results demonstrate that the proposed online training scheme allows receivers to outperform previous techniques based on self-supervision and joint-learning by a margin of up to 2.5 dB in coded bit error rate in rapidly-varying scenarios.
引用
收藏
页码:6415 / 6431
页数:17
相关论文
共 50 条
  • [31] UAV Maneuvering Target Tracking in Uncertain Environments Based on Deep Reinforcement Learning and Meta-Learning
    Li, Bo
    Gan, Zhigang
    Chen, Daqing
    Sergey Aleksandrovich, Dyachenko
    REMOTE SENSING, 2020, 12 (22) : 1 - 20
  • [32] Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization
    Tran, Trang Thi Kieu
    Lee, Taesam
    Shin, Ju-Young
    Kim, Jong-Suk
    Kamruzzaman, Mohamad
    ATMOSPHERE, 2020, 11 (05)
  • [33] NO-REGRET NON-CONVEX ONLINE META-LEARNING
    Zhuang, Zhenxun
    Wang, Yunlong
    Yu, Kezi
    Lu, Songtao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3942 - 3946
  • [34] Developer recommendation for Topcoder through a meta-learning based policy model
    Zhang, Zhenyu
    Sun, Hailong
    Zhang, Hongyu
    EMPIRICAL SOFTWARE ENGINEERING, 2020, 25 (01) : 859 - 889
  • [35] Developer recommendation for Topcoder through a meta-learning based policy model
    Zhenyu Zhang
    Hailong Sun
    Hongyu Zhang
    Empirical Software Engineering, 2020, 25 : 859 - 889
  • [36] MLS: A Meta-Learning Based Stackelberg Model for Robot Trajectory Guidance
    Guo, Jin
    Jiang, Zhiyong
    Liu, Yifan
    Gong, Lili
    2024 8TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION, ICRCA 2024, 2024, : 23 - 28
  • [37] Online Adaptation Through Meta-learning for Stereo Depth Estimation
    Zhang Z.-Y.
    Yang J.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1447 - 1455
  • [38] Context Adaptive Metric Model for Meta-learning
    Wang, Zhe
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 393 - 405
  • [39] Learning to Demodulate From Few Pilots via Offline and Online Meta-Learning
    Park, Sangwoo
    Jang, Hyeryung
    Simeone, Osvaldo
    Kang, Joonhyuk
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 226 - 239
  • [40] A hybrid breast cancer classification algorithm based on meta-learning and artificial neural networks
    Han, Luyao
    Yin, Zhixiang
    FRONTIERS IN ONCOLOGY, 2022, 12