Consecutive patterns in Coxeter groups

被引:0
作者
Gao, Yibo [1 ]
Wang, Anthony [2 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100084, Peoples R China
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Coxeter group; Parabolic decomposition; Consecutive pattern; SCHUBERT VARIETIES; SMOOTHNESS;
D O I
10.1016/j.jalgebra.2023.07.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary Coxeter group element a and a connected subset J of the Dynkin diagram, the parabolic decomposition a = aJaJ defines aJ as a consecutive pattern of a, gener-alizing the notion of consecutive patterns in permutations. We then define the cc-Wilf-equivalence classes as an exten-sion of the c-Wilf-equivalence classes for permutations, and identify non-trivial families of cc-Wilf-equivalent classes. Fur-thermore, we study the structure of the consecutive pattern poset in Coxeter groups and prove that its Mobius function is bounded by 2 when the arguments belong to finite Coxeter groups, but can be arbitrarily large otherwise. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:650 / 666
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 1994, Algebraic groups and their generalizations: classical methods
[2]   Entropy of interval maps via permutations [J].
Bandt, C ;
Keller, G ;
Pompe, B .
NONLINEARITY, 2002, 15 (05) :1595-1602
[3]   Smoothness of Schubert varieties via patterns in root subsystems [J].
Billey, S ;
Postnikov, A .
ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (03) :447-466
[4]  
Bjorner A., 2005, Graduate Texts in Mathematics, V231, pxiv+363
[5]  
Cofie M, 2022, Arxiv, DOI arXiv:2209.09277
[6]  
DYER M, 1991, COMPOS MATH, V78, P185
[7]   Consecutive patterns in permutations [J].
Elizalde, S ;
Noy, M .
ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (1-2) :110-125
[8]   The Structure of the Consecutive Pattern Poset [J].
Elizalde, Sergi ;
McNamara, Peter R. W. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (07) :2099-2134
[9]  
Elizalde S, 2016, IMA VOL MATH APPL, V159, P601, DOI 10.1007/978-3-319-24298-9_24
[10]   Clusters, generating functions and asymptotics for consecutive patterns in permutations [J].
Elizalde, Sergi ;
Noy, Marc .
ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (3-5) :351-374