Consecutive patterns in Coxeter groups

被引:0
作者
Gao, Yibo [1 ]
Wang, Anthony [2 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100084, Peoples R China
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Coxeter group; Parabolic decomposition; Consecutive pattern; SCHUBERT VARIETIES; SMOOTHNESS;
D O I
10.1016/j.jalgebra.2023.07.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary Coxeter group element a and a connected subset J of the Dynkin diagram, the parabolic decomposition a = aJaJ defines aJ as a consecutive pattern of a, gener-alizing the notion of consecutive patterns in permutations. We then define the cc-Wilf-equivalence classes as an exten-sion of the c-Wilf-equivalence classes for permutations, and identify non-trivial families of cc-Wilf-equivalent classes. Fur-thermore, we study the structure of the consecutive pattern poset in Coxeter groups and prove that its Mobius function is bounded by 2 when the arguments belong to finite Coxeter groups, but can be arbitrarily large otherwise. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:650 / 666
页数:17
相关论文
共 18 条
  • [1] Entropy of interval maps via permutations
    Bandt, C
    Keller, G
    Pompe, B
    [J]. NONLINEARITY, 2002, 15 (05) : 1595 - 1602
  • [2] Smoothness of Schubert varieties via patterns in root subsystems
    Billey, S
    Postnikov, A
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (03) : 447 - 466
  • [3] Bjorner A., 2005, GRADUATE TEXTS MATH, V231
  • [4] Carrell James B., 1994, P S PURE MATH, V56, P53
  • [5] Cofie M, 2022, Arxiv, DOI arXiv:2209.09277
  • [6] DYER M, 1991, COMPOS MATH, V78, P185
  • [7] Consecutive patterns in permutations
    Elizalde, S
    Noy, M
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (1-2) : 110 - 125
  • [8] The Structure of the Consecutive Pattern Poset
    Elizalde, Sergi
    McNamara, Peter R. W.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (07) : 2099 - 2134
  • [9] Elizalde S, 2016, IMA VOL MATH APPL, V159, P601, DOI 10.1007/978-3-319-24298-9_24
  • [10] Clusters, generating functions and asymptotics for consecutive patterns in permutations
    Elizalde, Sergi
    Noy, Marc
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (3-5) : 351 - 374