[3] Natl Renewable Energy Lab, PV Mat Reliabil & Durabil Grp, Golden, CO 80401 USA
[4] Fac Sci, Equipe Mecan Fluides, Lab Mecan Energet, BP 717,BV Mohamed 6, Oujda 60000, Morocco
[5] Green Energy Pk, R206, Ben Guerir, Morocco
来源:
IEEE JOURNAL OF PHOTOVOLTAICS
|
2023年
/
13卷
/
06期
关键词:
Temperature measurement;
Satellites;
Data models;
Meteorology;
Wind speed;
Regression tree analysis;
Predictive models;
Artificial neural network (ANN);
environmental variables;
forecasting;
photovoltaic (PV) power;
response surface methodology (RSM) model;
ARTIFICIAL NEURAL-NETWORKS;
SUPPORT VECTOR MACHINES;
SOLAR;
IRRADIANCE;
OUTPUT;
CLASSIFICATION;
TECHNOLOGIES;
D O I:
10.1109/JPHOTOV.2023.3306827
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Accurate prediction of photovoltaic (PV) power output is crucial for assessing the feasibility of early-stage projects in relation to specific site weather conditions. While various mathematical models have been used in the past for PV power prediction, most of them only consider irradiance and ambient temperature, neglecting other important meteorological parameters. In this article, a 1-year dataset from a high-precision meteorological station at the Green Energy Research facility is utilized, along with electrical parameters from a polycrystalline silicon c-Si PV module exposed during the study period, to forecast PV power. In addition, the accuracy of using satellite data for PV power forecasting is investigated, considering the growing trend of its utilization in recent research. Regression techniques, such as linear regression with interaction, tree regression, Gaussian process regression, ensemble learning for regression, response surface methodology, SVM cubic, and artificial neural network (ANN), are employed for PV power prediction, using both ground measurement data and satellite data. Comparatively lower accuracies are observed when using satellite data across all regression methods, in contrast to the higher accuracies achieved with ground-based measurements. Notably, the Gaussian process regression method demonstrates high accuracy (R-2 = 0.25 for satellite data and R-2 = 0.94 for ground-based data). Furthermore, the ANN approach further enhances the accuracy of PV power forecasting, yielding R-2 = 0.42 for satellite data and R-2 = 0.96 for ground-based data. These findings emphasize the need for caution when relying on satellite data for PV power forecasting, even when employing advanced ANN approaches. It underscores the importance of considering ground-based measurements for more reliable and accurate predictions.