Application of electrochemical oxidation technology in treating high-salinity organic ammonia-nitrogen wastewater

被引:40
作者
Bao, Huanjun [1 ,2 ,3 ]
Wu, Meirong [1 ,2 ,3 ]
Meng, Xiangsong [1 ,2 ,3 ,4 ]
Han, Haisheng [1 ,2 ,3 ]
Zhang, Chenyang [1 ,2 ,3 ]
Sun, Wei [1 ,2 ,3 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Peoples R China
[2] Cent South Univ, Key Lab Hunan Prov Clean & Efficient Utilizat Stra, Changsha 410083, Peoples R China
[3] Cent South Univ, Hunan Int Joint Res Ctr Efficient & Clean Utilizat, Changsha 410083, Peoples R China
[4] Wuhan Univ Sci & Technol, State Environm Protect Key Lab Mineral Met Resourc, Wuhan 430081, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2023年 / 11卷 / 05期
关键词
High-salinity organic ammonia-nitrogen; wastewater; Chemical oxygen demand; Ammonia nitrogen; Electrochemical oxidation; LANDFILL LEACHATE TREATMENT; DOPED DIAMOND ELECTRODE; TIN DIOXIDE ELECTRODES; ANODIC-OXIDATION; RATE CONSTANTS; FISH CULTURE; REMOVAL; POLLUTANTS; PHENOL; REDUCTION;
D O I
10.1016/j.jece.2023.110608
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the rapid industrialization and urbanization processes, wastewater pollution is becoming a severe issue that threatens the human health and environment. High-salinity organic ammonia-nitrogen wastewater is a difficultto-treat type of wastewater, thereby posing a serious risk to the environment. This type of wastewater is generated from various sources, including smelting wastewater, pharmaceutical wastewater, landfill leachate and aquaculture wastewater. The sources, characteristics and hazards of high-salinity organic ammonia-nitrogen wastewater are presented. Electrochemical oxidation (EO) technology is investigated to treat this type of wastewater, including its basic principles and mechanisms. Finally, we analyze the influencing factors of EO and provide a conclusion and future prospects for this technology.
引用
收藏
页数:17
相关论文
共 161 条
[21]   ELECTROCATALYSIS IN THE ELECTROCHEMICAL CONVERSION/COMBUSTION OF ORGANIC POLLUTANTS FOR WASTE-WATER TREATMENT [J].
COMNINELLIS, C .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1857-1862
[22]   Service life of Ti/SnO2-Sb2O5 anodes [J].
CorreaLozano, B ;
Comninellis, C ;
DeBattisti, A .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (08) :970-974
[23]   Ti4O7 reactive electrochemical membrane for humic acid removal: Insights of electrosorption and electrooxidation [J].
Cui, Lele ;
Zhang, Yangyang ;
He, Keyou ;
Sun, Mingming ;
Zhang, Zhenghua .
SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 293
[24]   Acidity of the carbonate radical [J].
Czapski, G ;
Lymar, SV ;
Schwarz, HA .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (18) :3447-3450
[25]   A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria [J].
Daims, Holger ;
Luecker, Sebastian ;
Wagner, Michael .
TRENDS IN MICROBIOLOGY, 2016, 24 (09) :699-712
[26]  
Dauda Akeem Babatunde, 2019, Aquaculture and Fisheries, V4, P81, DOI 10.1016/j.aaf.2018.10.002
[27]  
De Battisti A, 2018, ELECTROCHEMICAL WATER AND WASTEWATER TREATMENT, P119, DOI 10.1016/B978-0-12-813160-2.00005-5
[28]   Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme [J].
Deng, Yang ;
Zhu, Xu ;
Chen, Nan ;
Feng, Chuanping ;
Wang, Haishuang ;
Kuang, Peijing ;
Hu, Weiwu .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 745
[29]   Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes [J].
Diaz, V. ;
Ibanez, R. ;
Gomez, P. ;
Urtiaga, A. M. ;
Ortiz, I. .
WATER RESEARCH, 2011, 45 (01) :125-134
[30]   Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: Electrode characterization, degradation mechanism and toxicity [J].
Duan, Xiaoyue ;
Wang, Weiyi ;
Wang, Qian ;
Sui, Xinyu ;
Li, Na ;
Chang, Limin .
CHEMOSPHERE, 2020, 260