Exploring attention mechanism for graph similarity learning

被引:5
作者
Tan, Wenhui [1 ]
Gao, Xin [1 ]
Li, Yiyang [1 ]
Wen, Guangqi [1 ]
Cao, Peng [1 ,2 ]
Yang, Jinzhu [1 ,2 ]
Li, Weiping [3 ]
Zaiane, Osmar R. [4 ]
机构
[1] Northeastern Univ, Comp Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang, Peoples R China
[3] Peking Univ, Sch Software & Microelect, Beijing, Peoples R China
[4] Univ Alberta, Alberta Machine Intelligence Inst, Edmonton, AB, Canada
关键词
Graph similarity; Graph neural network; Multi-head self-attention; Deep learning; Graph embedding learning; COMPUTATION;
D O I
10.1016/j.knosys.2023.110739
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph similarity estimation is a challenging task due to the complex graph structure. Though important and well-studied, three key aspects are yet to be fully handled in a unified framework: (i) how to exploit the node embedding by leveraging both local spatial neighborhood information and the global context, (ii) how to effectively learn richer cross graph interactions from a pairwise node perspective and (iii) how to map the similarity matrix into a similarity score by exploiting the inherent structure in the similarity matrix. To solve these issues, we explore multiple attention mechanisms for graph similarity learning in this work. More specifically, we propose a unified graph similarity learning framework involving (i) a hybrid of graph convolution and graph self-attention for node embedding learning, (ii) a cross graph co-attention (GCA) module for graph interaction modeling, (iii) similarity-wise self-attention (SSA) module for graph similarity matrix alignment and (iv) graph similarity matrix learning for predicting the similarity scores. Extensive experimental results on three challenging benchmarks including LINUX, AIDS, and IMDBMulti demonstrate that the proposed NA-GSL performs favorably against state-of-the-art graph similarity estimation methods. The code is available at https://github.com/AlbertTan404/NA-GSL. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Application of deep metric learning to molecular graph similarity
    Damien E. Coupry
    Peter Pogány
    Journal of Cheminformatics, 14
  • [22] A dynamic graph attention network with contrastive learning for knowledge graph completion
    Xujiang Li
    Jie Hu
    Jingling Wang
    Tianrui Li
    World Wide Web, 2025, 28 (4)
  • [23] BSCDNet: A Building Change Detection Network With Category Differentiation Using a Graph Attention Mechanism and Multitask Learning
    Shen, Qian
    Tao, Shikang
    Yang, Rui
    Zhang, Xin
    Wang, Min
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15761 - 15776
  • [24] DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations
    Wang, Jinxian
    Liu, Xuejun
    Shen, Siyuan
    Deng, Lei
    Liu, Hui
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [25] A review on the attention mechanism of deep learning
    Niu, Zhaoyang
    Zhong, Guoqiang
    Yu, Hui
    NEUROCOMPUTING, 2021, 452 : 48 - 62
  • [26] Enhancing knowledge graph density through graph relation attention and contrastive learning
    Chunyu Lu
    Tianran Chen
    Duo Shang
    Jun Luo
    Xin Hui
    Ruhui Shi
    The Journal of Supercomputing, 81 (8)
  • [27] RotatGAT: Learning Knowledge Graph Embedding with Translation Assumptions and Graph Attention Networks
    Wang, Guangbin
    Ding, Yuxin
    Xie, Zhibin
    Ma, Yubin
    Zhou, Zihan
    Qian, Wen
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [28] Learning for Feature Matching via Graph Context Attention
    Guo, Junwen
    Xiao, Guobao
    Tang, Zhimin
    Chen, Shunxing
    Wang, Shiping
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Research on Graph Feature Data Aggregation Algorithm Based on Graph Convolution and Attention Mechanism
    Lei, Wenhan
    Liu, Xinyuan
    Ye, Lin
    Hu, Tao
    Gong, Lei
    Luo, Junxia
    2024 4TH INTERNATIONAL CONFERENCE ON ELECTRONIC MATERIALS AND INFORMATION ENGINEERING, EMIE 2024, 2024, : 146 - 150
  • [30] GRAPH ATTENTION NETWORKS WITH STRUCTURAL ATTENTION MECHANISM FOR ASPECT-BASED SENTIMENT CLASSIFICATION
    Li, Xiaowen
    Lu, Ran
    Liu, Peiyu
    Zhu, Zhengfang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (09) : 1805 - 1819