One-skeleton posets of Bruhat interval polytopes

被引:1
|
作者
Gaetz, Christian [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
关键词
Bruhat interval polytope; Weak order; Lattice; Schubert variety; Torus orbit; Smooth; VARIETIES;
D O I
10.1016/j.aim.2023.109216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Introduced by Kodama and Williams, Bruhat interval poly -topes are generalized permutohedra closely connected to the study of torus orbit closures and total positivity in Schubert varieties. We show that the 1-skeleton posets of these poly -topes are lattices and classify when the polytopes are simple, thereby resolving open problems and conjectures of Fraser, of Lee-Masuda, and of Lee-Masuda-Park. In particular, we classify when generic torus orbit closures in Schubert varieties are smooth. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A note on "Posets having continuous interval"
    Abdala, Jarafe
    Santana, Fagner
    THEORETICAL COMPUTER SCIENCE, 2020, 837 : 207 - 208
  • [42] POSETS HAVING A SELFDUAL INTERVAL POSET
    LIHOVA, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1994, 44 (03) : 523 - 533
  • [43] POSETS WITH INTERVAL UPPER BOUND GRAPHS
    SCOTT, DD
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1986, 3 (03): : 269 - 281
  • [44] Base polytopes of series-parallel posets: Linear description and optimization
    Schrader, R
    Schulz, AS
    Wambach, G
    MATHEMATICAL PROGRAMMING, 1998, 82 (1-2) : 159 - 173
  • [45] Generalized parking functions, descent numbers, and chain polytopes of ribbon posets
    Chebikin, Denis
    Postnikov, Alexander
    ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (02) : 145 - 154
  • [46] Base polytopes of series-parallel posets: Linear description and optimization
    Inst. Informatik Zentrum P., Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany
    不详
    Math Program Ser B, 1-2 (159-173):
  • [47] The combinatorics of interval-vector polytopes
    Beck, Matthias
    De Silva, Jessica
    Dorfsman-Hopkins, Gabriel
    Pruitt, Joseph
    Ruiz, Amanda
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [48] Bijective proof of a conjecture on unit interval posets
    Fang W.
    Discrete Mathematics and Theoretical Computer Science, 2024, 262
  • [49] Bijective proof of a conjecture on unit interval posets
    Fang, Wenjie
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (02):
  • [50] Maximal point spaces of closed interval posets
    He, Zhaorong
    Yang, Zhongqiang
    Zhao, Dongsheng
    TOPOLOGY AND ITS APPLICATIONS, 2022, 322