One-skeleton posets of Bruhat interval polytopes

被引:1
|
作者
Gaetz, Christian [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
关键词
Bruhat interval polytope; Weak order; Lattice; Schubert variety; Torus orbit; Smooth; VARIETIES;
D O I
10.1016/j.aim.2023.109216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Introduced by Kodama and Williams, Bruhat interval poly -topes are generalized permutohedra closely connected to the study of torus orbit closures and total positivity in Schubert varieties. We show that the 1-skeleton posets of these poly -topes are lattices and classify when the polytopes are simple, thereby resolving open problems and conjectures of Fraser, of Lee-Masuda, and of Lee-Masuda-Park. In particular, we classify when generic torus orbit closures in Schubert varieties are smooth. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条