Spin-Orbital Transformation in a Tight Focus of an Optical Vortex with Circular Polarization

被引:4
|
作者
Kotlyar, Victor V. [1 ,2 ]
Stafeev, Sergey S. [1 ,2 ]
Zaitsev, Vladislav D. [1 ,2 ]
Telegin, Alexey M. [1 ,2 ]
Kozlova, Elena S. [1 ,2 ]
机构
[1] RAS, Laser Measurements Lab, Image Proc Syst Inst, Branch FSRC Crystallog & Photon, 151 Molodogvardeyskaya St, Samara 443001, Russia
[2] Samara Natl Res Univ, Tech Cybernet Dept, 34 Moskovskoe Shosse, Samara 443086, Russia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
基金
俄罗斯科学基金会;
关键词
Richards-Wolf formalism; spin angular momentum; orbital angular momentum; spin-orbital conversion; tight focusing; ANGULAR-MOMENTUM; TRANSVERSE SHIFT; FOCAL SPOT; LIGHT; BEAMS; SIGN;
D O I
10.3390/app13148361
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the framework of the Richards-Wolf formalism, the spin-orbit conversion upon tight focusing of an optical vortex with circular polarization is studied. We obtain exact formulas which show what part of the total (averaged over the beam cross-section) longitudinal spin angular momentum is transferred to the total longitudinal orbital angular momentum in the focus. It is shown that the maximum part of the total longitudinal angular momentum that can be transformed into the total longitudinal orbital angular momentum is equal to half the beam power, and this maximum is reached at the maximum numerical aperture equal to one. We prove that the part of the spin angular momentum that transforms into the orbital angular momentum does not depend on the optical vortex topological charge. It is also shown that by virtue of spin-orbital conversion upon focusing, the total longitudinal energy flux decreases and partially transforms into the whole transversal (azimuthal) energy flow in the focus. Moreover, the longitudinal energy flux decreases by exactly the same amount that the total longitudinal spin angular momentum decreases.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Vortex energy flow in the tight focus of a non-vortex field with circular polarization
    Kotlyar, V. V.
    Stafeev, S. S.
    Nalimov, A. G.
    COMPUTER OPTICS, 2020, 44 (01) : 5 - 11
  • [2] Spin-Orbital Conversion with the Tight Focus of an Axial Superposition of a High-Order Cylindrical Vector Beam and a Beam with Linear Polarization
    Kotlyar, Victor
    Stafeev, Sergey
    Zaitsev, Vladislav
    Kozlova, Elena
    MICROMACHINES, 2022, 13 (07)
  • [3] Linear to circular polarization conversion in the sharp focus of an optical vortex
    Nalimov, A. G.
    Stafeev, S. S.
    COMPUTER OPTICS, 2021, 45 (01) : 13 - +
  • [4] Spin-orbital coupling in strong interaction and global spin polarization
    Gao, Jian-Hua
    Huang, Xu-Guang
    Liang, Zuo-Tang
    Wang, Qun
    Wang, Xin-Nian
    ACTA PHYSICA SINICA, 2023, 72 (07)
  • [5] Angular and Orbital Angular Momenta in the Tight Focus of a Circularly Polarized Optical Vortex
    Kotlyar, Victor V. V.
    Kovalev, Alexey A. A.
    Telegin, Alexey M. M.
    PHOTONICS, 2023, 10 (02)
  • [6] Hierarchical spin-orbital polarization of a giant Rashba system
    Bawden, Lewis
    Riley, Jonathan M.
    Kim, Choong H.
    Sankar, Raman
    Monkman, Eric J.
    Shai, Daniel E.
    Wei, Haofei I.
    Lochocki, Edward B.
    Wells, Justin W.
    Meevasana, Worawat
    Kim, Timur K.
    Hoesch, Moritz
    Ohtsubo, Yoshiyuki
    Le Fevre, Patrick
    Fennie, Craig J.
    Shen, Kyle M.
    Chou, Fangcheng
    King, Phil D. C.
    SCIENCE ADVANCES, 2015, 1 (08):
  • [7] Orbital and spin energy flows in tight focus
    Kotlyar, V. V.
    Stafeev, S. S.
    OPTIK, 2021, 245
  • [8] Spin-orbital polarization of Majorana edge states in oxide nanowires
    Settino, J.
    Forte, F.
    Perroni, C. A.
    Cataudella, V
    Cuoco, M.
    Citro, R.
    PHYSICAL REVIEW B, 2020, 102 (22)
  • [9] Spin angular momentum at the tight focus of a cylindrical vector beam with an imbedded optical vortex
    Kotlyar V.V.
    Stafeev S.S.
    Telegin A.M.
    Optik, 2023, 287
  • [10] An orbital energy flow and a spin flow at the tight focus
    Stafeev, S. S.
    COMPUTER OPTICS, 2021, 45 (04) : 520 - +