Computational issues in parameter estimation for hidden Markov models with template model builder

被引:2
|
作者
Bacri, Timothee [1 ,4 ]
Berentsen, Geir D. [2 ]
Bulla, Jan [1 ,3 ]
Stove, Bard [1 ]
机构
[1] Univ Bergen, Dept Math, Bergen, Norway
[2] Norwegian Sch Econ, Dept Business & Management Sci, Bergen, Norway
[3] Univ Regensburg, Dept Psychiat & Psychotherapy, Regensburg, Germany
[4] Univ Bergen, Dept Math, POB 7803, N-5007 Bergen, Norway
关键词
Hidden Markov model; template model builder; smoothing probabilities; confidence intervals; maximum likelihood estimation; robustness; initial conditions; QUASI-NEWTON METHODS; MAXIMUM-LIKELIHOOD; PROBABILISTIC FUNCTIONS; STOCK; MAXIMIZATION; SERIES; BULL; HMM;
D O I
10.1080/00949655.2023.2226788
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A popular way to estimate the parameters of a hidden Markov model (HMM) is direct numerical maximization (DNM) of the (log-)likelihood function. The advantages of employing the TMB [Kristensen K, Nielsen A, Berg C, et al. TMB: automatic differentiation and Laplace approximation. J Stat Softw Articles. 2016;70(5):1-21] framework in R for this purpose were illustrated recently [Bacri T, Berentsen GD, Bulla J, et al. A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using template model builder. Biom J. 2022 Oct;64(7):1260-1288]. In this paper, we present extensions of these results in two directions. First, we present a practical way to obtain uncertainty estimates in form of confidence intervals (CIs) for the so-called smoothing probabilities at moderate computational and programming effort via TMB. Our approach thus permits to avoid computer-intensive bootstrap methods. By means of several examples, we illustrate patterns present for the derived CIs. Secondly, we investigate the performance of popular optimizers available in R when estimating HMMs via DNM. Hereby, our focus lies on the potential benefits of employing TMB. Investigated criteria via a number of simulation studies are convergence speed, accuracy, and the impact of (poor) initial values. Our findings suggest that all optimizers considered benefit in terms of speed from using the gradient supplied by TMB. When supplying both gradient and Hessian from TMB, the number of iterations reduces, suggesting a more efficient convergence to the maximum of the log-likelihood. Last, we briefly point out potential advantages of a hybrid approach.
引用
收藏
页码:3421 / 3457
页数:37
相关论文
共 50 条
  • [41] A framework for mixed estimation of hidden Markov models
    Dey, S
    Marcus, SI
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3473 - 3478
  • [42] S-estimation of hidden Markov models
    Alessio Farcomeni
    Luca Greco
    Computational Statistics, 2015, 30 : 57 - 80
  • [43] Shrinkage Estimation for Multivariate Hidden Markov Models
    Fiecas, Mark
    Franke, Juergen
    von Sachs, Rainer
    Kamgaing, Joseph Tadjuidje
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 424 - 435
  • [44] Minimax a posteriori estimation in the hidden Markov models
    Borisov, A. V.
    AUTOMATION AND REMOTE CONTROL, 2007, 68 (11) : 1917 - 1930
  • [45] Maximum spacing estimation for hidden Markov models
    Kristi Kuljus
    Bo Ranneby
    Statistical Inference for Stochastic Processes, 2025, 28 (1)
  • [46] Semiparametric hidden Markov models: identifiability and estimation
    Dannemann, Joern
    Holzmann, Hajo
    Leister, Anna
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (06): : 418 - 425
  • [47] Nonparametric Density Estimation in Hidden Markov Models
    C.C.Y. Dorea
    L.C. Zhao
    Statistical Inference for Stochastic Processes, 2002, 5 (1) : 55 - 64
  • [48] Estimation and strong approximation of hidden Markov models
    Gerencsér, L
    Molnár-Sáska, G
    POSITIVE SYSTEMS, PROCEEDINGS, 2003, 294 : 313 - 320
  • [49] Minimax a posteriori estimation in the hidden Markov models
    A. V. Borisov
    Automation and Remote Control, 2007, 68 : 1917 - 1930
  • [50] STATIONARY DISTRIBUTION ESTIMATION IN HIDDEN MARKOV MODELS
    Dorea, C. C. Y.
    Gilardoni, G. L.
    Goncalves, C. R.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2005, 5 (02) : 183 - 195