Computational issues in parameter estimation for hidden Markov models with template model builder

被引:2
|
作者
Bacri, Timothee [1 ,4 ]
Berentsen, Geir D. [2 ]
Bulla, Jan [1 ,3 ]
Stove, Bard [1 ]
机构
[1] Univ Bergen, Dept Math, Bergen, Norway
[2] Norwegian Sch Econ, Dept Business & Management Sci, Bergen, Norway
[3] Univ Regensburg, Dept Psychiat & Psychotherapy, Regensburg, Germany
[4] Univ Bergen, Dept Math, POB 7803, N-5007 Bergen, Norway
关键词
Hidden Markov model; template model builder; smoothing probabilities; confidence intervals; maximum likelihood estimation; robustness; initial conditions; QUASI-NEWTON METHODS; MAXIMUM-LIKELIHOOD; PROBABILISTIC FUNCTIONS; STOCK; MAXIMIZATION; SERIES; BULL; HMM;
D O I
10.1080/00949655.2023.2226788
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A popular way to estimate the parameters of a hidden Markov model (HMM) is direct numerical maximization (DNM) of the (log-)likelihood function. The advantages of employing the TMB [Kristensen K, Nielsen A, Berg C, et al. TMB: automatic differentiation and Laplace approximation. J Stat Softw Articles. 2016;70(5):1-21] framework in R for this purpose were illustrated recently [Bacri T, Berentsen GD, Bulla J, et al. A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using template model builder. Biom J. 2022 Oct;64(7):1260-1288]. In this paper, we present extensions of these results in two directions. First, we present a practical way to obtain uncertainty estimates in form of confidence intervals (CIs) for the so-called smoothing probabilities at moderate computational and programming effort via TMB. Our approach thus permits to avoid computer-intensive bootstrap methods. By means of several examples, we illustrate patterns present for the derived CIs. Secondly, we investigate the performance of popular optimizers available in R when estimating HMMs via DNM. Hereby, our focus lies on the potential benefits of employing TMB. Investigated criteria via a number of simulation studies are convergence speed, accuracy, and the impact of (poor) initial values. Our findings suggest that all optimizers considered benefit in terms of speed from using the gradient supplied by TMB. When supplying both gradient and Hessian from TMB, the number of iterations reduces, suggesting a more efficient convergence to the maximum of the log-likelihood. Last, we briefly point out potential advantages of a hybrid approach.
引用
收藏
页码:3421 / 3457
页数:37
相关论文
共 50 条
  • [31] Parameter redundancy and identifiability in hidden Markov models
    Diana J. Cole
    METRON, 2019, 77 : 105 - 118
  • [32] Parameter redundancy and identifiability in hidden Markov models
    Cole, Diana J.
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 105 - 118
  • [33] Computational Bayesian analysis of hidden Markov models
    Ryden, T
    Titterington, DM
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 194 - 211
  • [34] Parameter estimation of an asset price model driven by a weak hidden Markov chain
    Xi, Xiaojing
    Mamon, Rogemar
    ECONOMIC MODELLING, 2011, 28 (1-2) : 36 - 46
  • [35] Recursive Parameter Estimation and Its Convergence for Multivariate Normal Hidden Markov Inhomogeneous Models
    Fikri, Miftahul
    Abdul-Malek, Zulkurnain
    Esa, Mona Riza Mohd
    Supriyanto, Eko
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (05): : 840 - 854
  • [36] Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo
    Yildirim, Sinan
    Singh, Sumeetpal S.
    Dean, Thomas
    Jasra, Ajay
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 846 - 865
  • [37] Selection, parameter estimation, and discriminative training of hidden Markov models for general audio modeling
    Reyes-Gomez, MJ
    Ellis, DPW
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 73 - 76
  • [38] Parameter Estimation for Continuous Time Hidden Markov Processes
    Kutoyants, Yu. A.
    AUTOMATION AND REMOTE CONTROL, 2020, 81 (03) : 445 - 468
  • [39] Parameter Estimation for Continuous Time Hidden Markov Processes
    Yu. A. Kutoyants
    Automation and Remote Control, 2020, 81 : 445 - 468
  • [40] S-estimation of hidden Markov models
    Farcomeni, Alessio
    Greco, Luca
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 57 - 80