Computational issues in parameter estimation for hidden Markov models with template model builder

被引:2
|
作者
Bacri, Timothee [1 ,4 ]
Berentsen, Geir D. [2 ]
Bulla, Jan [1 ,3 ]
Stove, Bard [1 ]
机构
[1] Univ Bergen, Dept Math, Bergen, Norway
[2] Norwegian Sch Econ, Dept Business & Management Sci, Bergen, Norway
[3] Univ Regensburg, Dept Psychiat & Psychotherapy, Regensburg, Germany
[4] Univ Bergen, Dept Math, POB 7803, N-5007 Bergen, Norway
关键词
Hidden Markov model; template model builder; smoothing probabilities; confidence intervals; maximum likelihood estimation; robustness; initial conditions; QUASI-NEWTON METHODS; MAXIMUM-LIKELIHOOD; PROBABILISTIC FUNCTIONS; STOCK; MAXIMIZATION; SERIES; BULL; HMM;
D O I
10.1080/00949655.2023.2226788
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A popular way to estimate the parameters of a hidden Markov model (HMM) is direct numerical maximization (DNM) of the (log-)likelihood function. The advantages of employing the TMB [Kristensen K, Nielsen A, Berg C, et al. TMB: automatic differentiation and Laplace approximation. J Stat Softw Articles. 2016;70(5):1-21] framework in R for this purpose were illustrated recently [Bacri T, Berentsen GD, Bulla J, et al. A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using template model builder. Biom J. 2022 Oct;64(7):1260-1288]. In this paper, we present extensions of these results in two directions. First, we present a practical way to obtain uncertainty estimates in form of confidence intervals (CIs) for the so-called smoothing probabilities at moderate computational and programming effort via TMB. Our approach thus permits to avoid computer-intensive bootstrap methods. By means of several examples, we illustrate patterns present for the derived CIs. Secondly, we investigate the performance of popular optimizers available in R when estimating HMMs via DNM. Hereby, our focus lies on the potential benefits of employing TMB. Investigated criteria via a number of simulation studies are convergence speed, accuracy, and the impact of (poor) initial values. Our findings suggest that all optimizers considered benefit in terms of speed from using the gradient supplied by TMB. When supplying both gradient and Hessian from TMB, the number of iterations reduces, suggesting a more efficient convergence to the maximum of the log-likelihood. Last, we briefly point out potential advantages of a hybrid approach.
引用
收藏
页码:3421 / 3457
页数:37
相关论文
共 50 条
  • [1] Computational issues in parameter estimation for stationary hidden Markov models
    Bulla, Jan
    Berzel, Andreas
    COMPUTATIONAL STATISTICS, 2008, 23 (01) : 1 - 18
  • [2] Computational issues in parameter estimation for stationary hidden Markov models
    Jan Bulla
    Andreas Berzel
    Computational Statistics, 2008, 23 : 1 - 18
  • [3] A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
    Bacri, Timothee
    Berentsen, Geir D.
    Bulla, Jan
    Holleland, Sondre
    BIOMETRICAL JOURNAL, 2022, 64 (07) : 1260 - 1288
  • [4] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [5] Parameter estimation in pair-hidden Markov models
    Arribas-Gil, Ana
    Gassiat, Elisabeth
    Matias, Catherine
    SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (04) : 651 - 671
  • [6] Hidden Markov time series models: Some computational issues
    Zucchini, W
    MacDonald, IL
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 157 - 163
  • [7] Parameter Estimation of a Class of Hidden Markov Model with Diagnostics
    Nkemnole, E. B.
    Abass, O.
    Kasumu, R. A.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2013, 12 (01) : 181 - 197
  • [8] HIDDEN MARKOV MODEL FOR PARAMETER ESTIMATION OF A RANDOM WALK IN A MARKOV ENVIRONMENT
    Andreoletti, Pierre
    Loukianova, Dasha
    Matias, Catherine
    ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 605 - 625
  • [9] Recursive parameter estimation algorithm of the Dirichlet hidden Markov model
    Vaiciulyte, Jurate
    Sakalauskas, Leonidas
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 306 - 323
  • [10] Hidden Markov Linear Regression Model and its Parameter Estimation
    Liu, Hefei
    Wang, Kunqjnu
    Li, Yong
    IEEE ACCESS, 2020, 8 : 187037 - 187042