Diversity Knowledge Distillation for LiDAR-Based 3-D Object Detection

被引:2
作者
Ning, Kanglin [1 ]
Liu, Yanfei [1 ]
Su, Yanzhao [1 ]
Jiang, Ke [1 ]
机构
[1] High Tech Inst Xian, Dept Basic Courses, Xian 710025, Peoples R China
关键词
Detectors; Three-dimensional displays; Point cloud compression; Feature extraction; Laser radar; Object detection; Sensors; 3-D displays; detectors; knowledge distillation; laser radar; object detection;
D O I
10.1109/JSEN.2023.3241624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The light detection and ranging (LiDAR) sensor enables high-quality 3-D object detection, which is critical in autonomous driving applications. However, accurate detectors require more computing resources owing to the discreteness and disorder of point cloud data. To resolve this problem, we propose diversity knowledge distillation or 3-D object detection, which distills the knowledge from a two-stage high-accuracy detector to a faster one-stage detector. This framework includes methods to match the bounding box predictions of the one-stage student and two-stage teacher detectors with inconsistent numbers. Accordingly, we design a response-based distillation method to perform distillation. Then, a diversity feature score is proposed to guide the student in selecting the parts that need more attention on the middle-layer feature map and the region of interest (RoI) output by the distillation process. Experiments demonstrate that the proposed method can enhance the performance of a one-stage detector without increasing the computation of the mode in the test stage.
引用
收藏
页码:11181 / 11193
页数:13
相关论文
共 50 条
  • [41] LiDAR-Based Optimized Normal Distribution Transform Localization on 3-D Map for Autonomous Navigation
    Thakur, Abhishek
    Rajalakshmi, P.
    IEEE OPEN JOURNAL OF INSTRUMENTATION AND MEASUREMENT, 2024, 3
  • [42] Selective Transfer Learning of Cross-Modality Distillation for Monocular 3D Object Detection
    Ding, Rui
    Yang, Meng
    Zheng, Nanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9925 - 9938
  • [43] SPD: Semi-Supervised Learning and Progressive Distillation for 3-D Detection
    Xie, Bangquan
    Yang, Zongming
    Yang, Liang
    Luo, Ruifa
    Lu, Jun
    Wei, Ailin
    Weng, Xiaoxiong
    Li, Bing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3503 - 3513
  • [44] LiDAR-Camera Fusion in Perspective View for 3D Object Detection in Surface Mine
    Ai, Yunfeng
    Yang, Xue
    Song, Ruiqi
    Cui, Chenglin
    Li, Xinqing
    Cheng, Qi
    Tian, Bin
    Chen, Long
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (02): : 3721 - 3730
  • [45] TEMPORAL AXIAL ATTENTION FOR LIDAR-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    Zakhor, Avideh
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 201 - 205
  • [46] UADA3D: Unsupervised Adversarial Domain Adaptation for 3D Object Detection With Sparse LiDAR and Large Domain Gaps
    Wozniak, Maciej K.
    Hansson, Mattias
    Thiel, Marko
    Jensfelt, Patric
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (12): : 11210 - 11217
  • [47] Deep 3D Object Detection Networks Using LiDAR Data: A Review
    Wu, Yutian
    Wang, Yueyu
    Zhang, Shuwei
    Ogai, Harutoshi
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1152 - 1171
  • [48] Accurate and Robust Roadside 3-D Object Detection Based on Height-Aware Scene Reconstruction
    Chen, Yaqing
    Wang, Huaming
    IEEE SENSORS JOURNAL, 2024, 24 (19) : 30643 - 30653
  • [49] 3-D Object Detection for Multiframe 4-D Automotive Millimeter-Wave Radar Point Cloud
    Tan, Bin
    Ma, Zhixiong
    Zhu, Xichan
    Li, Sen
    Zheng, Lianqing
    Chen, Sihan
    Huang, Libo
    Bai, Jie
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11125 - 11138
  • [50] 3D-DFM: Anchor-Free Multimodal 3-D Object Detection With Dynamic Fusion Module for Autonomous Driving
    Lin, Chunmian
    Tian, Daxin
    Duan, Xuting
    Zhou, Jianshan
    Zhao, Dezong
    Cao, Dongpu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 10812 - 10822